Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Spline Snakes
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

A Unifying Approach and Interface for Spline-Based Snakes

M. Jacob, T. Blu, M. Unser

Proceedings of the SPIE International Symposium on Medical Imaging: Image Processing (MI'01), San Diego CA, USA, February 17-22, 2001, vol. 4322, part I, pp. 340-347.


In this paper, we present different solutions for improving spline-based snakes. First, we demonstrate their minimum curvature interpolation property, and use it as an argument to get rid of the explicit smoothness constraint. We also propose a new external energy obtained by integrating a non-linearly pre-processed image in the closed region bounded by the curve. We show that this energy, besides being efficiently computable, is sufficiently general to include the widely used gradient-based schemes, Bayesian schemes, their combinations and discriminant-based approaches. We also introduce two initialization modes and the appropriate constraint energies.

We use these ideas to develop a general snake algorithm to track boundaries of closed objects, with a user-friendly interface.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/jacob0103.html,
AUTHOR="Jacob, M. and Blu, T. and Unser, M.",
TITLE="A Unifying Approach and Interface for Spline-Based Snakes",
BOOKTITLE="Progress in Biomedical Optics and Imaging, vol. 2, no.
	27",
YEAR="2001",
editor="Sonka, M. and Hanson, K.M.",
volume="4322",
series="Proceedings of the {SPIE} International Symposium on Medical
	Imaging: {I}mage Processing ({MI'01})",
pages="340-347",
address="San Diego CA, USA",
month="February 19-22,",
organization="",
publisher="",
note="Part {I}")
© 2001 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved