Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Wavelet Footprints
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Multidimensional, Multistage Wavelet Footprints: A New Tool for Image Segmentation and Feature Extraction in Medical Ultrasound

C.H.P. Jansen, M. Arigovindan, M. Sühling, S. Marsch, M. Unser, P. Hunziker

Proceedings of the SPIE International Symposium on Medical Imaging: Image Processing (MI'03), San Diego CA, USA, February 17-20, 2003, vol. 5032, part II, pp. 762-767.


We present a new wavelet-based strategy for autonomous feature extraction and segmentation of cardiac structures in dynamic ultrasound images. Image sequences subjected to a multidimensional (2D plus time) wavelet transform yield a large number of individual subbands, each coding for partial structural and motion information of the ultrasound sequence. We exploited this fact to create an analysis strategy for autonomous analysis of cardiac ultrasound that builds on shape- and motion specific wavelet subband flters. Subband selection was in an automatic manner based on subband statistics. Such a collection of predefined subbands corresponds to the so-called footprint of the target structure and can be used as a multidimensional multiscale filter to detect and localize the target structure in the original ultrasound sequence. Autonomous, unequivocal localization by the autonomous algorithm is then done using a peak finding algorithm, allowing to compare the findings with a reference standard. Image segmentation is then possible using standard region growing operations. To test the feasibility of this multiscale footprint algorithm, we tried to localize, enhance and segment the mitral valve autonomously in 182 non-selected clinical cardiac ultrasound sequences. Correct autonomous localization by the algorithm was feasible in 165 of 182 reconstructed ultrasound sequences, using the experienced echocardiographer as reference. This corresponds to a 91% accuracy of the proposed method in unselected clinical data. Thus, multidimensional multiscale wavelet footprints allow successful autonomous detection and segmentation of the mitral valve with good accuracy in dynamic cardiac ultrasound sequences which are otherwise difficult to analyse due to their high noise level.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/jansen0301.html,
AUTHOR="Jansen, C.P.H. and Arigovindan, M. and S{\"{u}}hling, M. and
	Marsch, S. and Unser, M. and Hunziker, P.",
TITLE="Multidimensional, Multistage Wavelet Footprints: {A} New Tool
	for Image Segmentation and Feature Extraction in Medical
	Ultrasound",
BOOKTITLE="Progress in Biomedical Optics and Imaging, vol. 4, no.
	23",
YEAR="2003",
editor="Sonka, M. and Fitzpatrick, J.M.",
volume="5032",
series="Proceedings of the {SPIE} International Symposium on Medical
	Imaging: {I}mage Processing ({MI'03})",
pages="762--767",
address="San Diego CA, USA",
month="February 17-20,",
organization="",
publisher="",
note="Part {II}")

© 2003 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved