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Single-molecule localization microscopy (SMLM) methods, 
such as photoactivated localization microscopy (PALM), 
circumvent the diffraction limit of light by separating fluoro

phore detections in time through stochastic activation and photo
bleaching, and then localizing the resulting sparse distribution of 
point spread functions (PSFs)1. The resulting point pattern is a 
purported realization of the underlying ground-truth positions of 
the fluorophores, but is corrupted by a number of artifacts resulting 
from the photophysical behavior of the probes as well as the imag-
ing and localization steps. Most problematic is the multiple appear-
ance (multiple-blinking) problem whereby fluorophores undergo  
multiple on-off cycles before permanently bleaching, making a 
single fluorophore appear as several localizations. This issue is  
exacerbated by the discretization effects that result from observing 
fluorescent signals on discrete camera frames2. The multiple-blinking 
problem produces datasets that are artificially clustered and overly 
populated (Fig. 1a). As such, quantitative cluster analysis of SMLM 
data, including testing for spatial randomness of the underlying 
fluorophores, remains a challenge.

The most commonly used method for correction of the 
multiple-blinking problem is to merge events that appear close 
in space and time3–6, which we refer to as dark time thresholding 
(DTT). Such methods require a means of determining the best 
spatial and temporal thresholds for merging. This determination 
typically relies on heuristic methods, since the blinking behavior 
of the fluorescent probes is often unknown. Apart from the chal-
lenges involved in determining optimal thresholds, these methods 
have variable performance, depending on the underlying protein 
organization and fluorophore blinking characteristics. Instead of 
attempting to produce a corrected version of the data that can then 
be used for any subsequent analysis, other approaches have looked 
to correct specific spatial statistics to account for multiple blinking.  

For example, it is possible to use calibration data to estimate a 
multiple-blink corrected pair-correlation curve7,8. However, this 
cannot then be used to find a cluster map.

Here, we present a new method for correction of multiple-blinking 
artifacts in PALM data, which estimates, directly from the sample 
dataset, the parameters of a realistic model of fluorescent protein 
photophysics9. Cluster analysis of the spatial (x,y), temporal (t) and 
precision (σ) dataset then allows computation of the marginal likeli
hood of any given blink-merge proposal, under a full generative 
model for the data. We select the most likely of several proposals 
generated using a customized hierarchical clustering algorithm. 
Finally, each blink cluster is consolidated into a single position, now 
free from multiple blinking. As with other correction methodolo-
gies5, an added benefit of this consolidation step is to improve locali
zation precision. The overall effect is to convert the set of raw x,y,t,σ 
localization data into a new set, x,y,σ, with enhanced resolution.

We evaluate the method on simulated PALM data, varying both 
the ground-truth organization and photophysical properties of the 
fluorescent proteins. In each case, we compare to the state-of-the-art 
method of Bohrer et al.10, and DTT, outperforming alternatives in 
speed and accuracy. Our method allows for testing the completely 
spatially random (CSR) hypothesis at the correct significance level, 
whereas DTT fails to do so. We also validate the method on experi-
mental data in which a notion of ground truth is available, namely 
nuclear pore complex (NPC) data in which the number of proteins 
per complex is known to be 32.

PALM is increasingly used in the biological sciences and owing 
to the properties of commonly used total internal reflection fluores-
cence (TIRF) illumination, the distributions of membrane proteins 
have been especially well studied. Despite this, because of artificial 
clustering resulting from multiple blinking, the question of whether 
membrane proteins are randomly distributed or not has become 
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increasingly contentious11. Using our validated method combined 
with subsequent testing of the corrected protein locations, we show 
that the adapter protein Linker for Activation of T cells is clustered 
in the plasma membrane of T cell immune synapses12,13.

Results
Description of the algorithm. We work with the space–time locali
zations and uncertainties that result from localization software 
(here, ThunderSTORM14) that is run on the raw microscope data. 
We apply drift correction, but otherwise no preprocessing is used. 
The data points are then modeled as a collection of independent 
and identically distributed fluorophore blinking clusters, with times 
following a realistic four-state model15,16, discretized by the camera 
frames. The spatial locations for each cluster are independently 
drawn from a spherical Gaussian distribution of fixed center (the 
true molecule position) and variable but known standard deviation 
(the localization uncertainty). The centers are given a uniform prior 
over the region of interest (ROI).

We refer to our algorithm as model-based correction (MBC), and 
a schematic of its workflow is shown in Fig. 1b. We first estimate 
the temporal rates governing the switching behavior of fluorescent 
proteins under the four-state model9, and the fraction of background 
noise points. This is done directly using the experimental data, 
requiring no additional calibration experiments. A recently devel-
oped mathematical technique extracts a component from the empi
rical mark and pair-correlation functions that depends only on the 

spatio-temporal dynamics of the multiple-blinking process, and not 
the underlying protein distribution. The parameters of the four-state 
model drive the theoretical shape of this component, and so they can 
be optimized to best fit the empirical version9. The rate estimates 
allow computation of the marginal likelihood of a sequence of time-
points posited to correspond to one multiple-blinking fluorescent 
protein, and further yields an estimate on the total number, N, of 
proteins and noise points in the ROI. Using a custom agglomerative 
hierarchical clustering (AHC) algorithm17, we split the data in the 
ROI into partitions with N categories. AHC takes as input a dissimi-
larity matrix and a linkage criterion. The dissimilarity matrix deter-
mines the distances between pairs of points, and the linkage criterion 
determines the way to generalize this distance to pairs of clusters. To 
favor groups likely to correspond to multiple-blinking clusters, we 
first scale the temporal dimension by a time-dilation hyperparame-
ter, S, and then compute the sum of Euclidean distances in space and 
in time. For linkage, we choose Ward’s minimum variance method18, 
which is well-suited for Gaussian clusters, and consistently resulted 
in the most likely partitions across all tested linkage criteria. By vary-
ing S, we obtain a large sequence of blinking cluster proposals, and 
evaluate the marginal likelihood of each. Finally, using the best parti-
tion and the localization uncertainties, we optimally merge the clus-
ters down to their estimated centers, using inverse-variance weighted 
averages, and update the uncertainty associated with that center 
(example shown in Supplementary Fig. 1 and three-dimensional 
(3D) rotatable version in Supplementary Data).
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Fig. 1 | Illustration of the MBC workflow. a, During PALM image acquisition and subsequent localization steps, the ground-truth protein positions are 
corrupted by multiple blinking in combination with discretization by the camera frames and scrambling by the localization uncertainty, resulting in a 
dataset that is over-populated and over-clustered. b, Our algorithm (MBC) takes as input x,y,t,σ data and estimates the rate parameters of a four-state 
photophysical model, from which it derives the total number of molecules in the ROI. This is then used as input to a hierarchical clustering step 
(experimental data shown with colors representing the clusters found), after which clusters are merged to their centers, creating a new dataset free from 
multiple-blinking and with enhanced localization precision.
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PALM data simulation setup. For a given set of protein positions, 
corresponding PALM data were generated as follows. We simulated 
fluorescent protein time traces according to the four-state switch-
ing model (Fig. 1a), and the continuous signals were discretized to 
emulate a camera operating at 25 frames per second (40 ms inte-
gration time). This was done for two different sets of rates (given 
in Supplementary Table 1), with the light blinking resulting in 5.36 
appearances per protein on average, and the heavy blinking result-
ing in 14.94 appearances. These were selected to approximate real 
blinking behavior of fluorescent proteins such as mEos2. For each of 
these appearances, the observed spatial coordinates were simulated 
by adding Gaussian localization noise to the ground-truth position 
of the associated fluorescent protein, with standard deviation fol-
lowing a Gamma distribution with mean 30 nm and standard devia-
tion 13.4 nm, emulating the localization uncertainties that can be 
observed in real PALM data12.

Recovery of the ground truth. We begin by comparing MBC to 
the method of Bohrer et al., which we take to be the state of the 
art at the task of recovering protein positions without calibration 
data. We will conduct this comparison with simulated data from 
regular (529 fluorescent proteins were regularly positioned on a 
roughly 3,000 × 3,000 nm grid), CSR (500 proteins were placed at 
random in a noiseless 3,000 × 3,000 nm ROI) and clustered distri-
butions. For the latter, 500 ground-truth proteins were placed in a 
3,000 × 3,000 nm ROI, with either ten clusters of ten molecules each, 
overlaid with 400 CSR molecules (light clustering) or ten clusters of 
40 molecules each, overlaid with 100 CSR molecules (heavy cluster-
ing). The metrics used for the comparison are Wasserstein distance, 
image error and counting error. The Wasserstein distance can be 
thought of as the cost of transporting a standardized mass between 
two sets of points and is also known as the earth mover’s distance. 
For a perfectly reconstructed dataset this distance is zero, whereas 
under a model in which each molecule was observed exactly once 
with localization error drawn from the Normal-Gamma distribution 

above, this distance would be roughly 37 nm. In this way, whenever 
we report a Wasserstein distance below 37 nm, we can conclude that 
we have exploited, rather than suffered from, the multiple-blinking 
artifact. Relevant plots show this 37 nm benchmark. The image error 
measures the protein count error in 100 × 100 nm pixels, whereas 
the counting error refers to the total number of proteins per ROI, 
calculated as (corrected-truth)/truth.

In the main text we show results at the two extremes, regular 
(Fig. 2) versus heavy clustering (Fig. 3), with the two other condi-
tions shown in Extended Data Fig. 1. Our method is always superior 
in Wasserstein distance and image error, in counting error for heavy 
blinking and never substantially worse. Our gains are most substan-
tial under heavy clustering with heavy blinking, where Bohrer et al.’s 
method overcounts proteins by a factor of at least two (Fig. 3). Our 
method is also much faster, taking 1 or 2 min per ROI on a standard 
desktop versus several hours.

As an alternative to Bohrer et al., we also consider an idealized 
version of DTT (iDTT), in which points are considered to have 
come from the same fluorophore if they were separated by at most 
r in space and T in time, chosen to minimize either the counting 
error (iDTT_N) or Wasserstein distance (iDTT_W). The reason we 
consider this choice, which is unavailable in practice, is to cover all 
possible methods for choosing r and T, including those involving 
calibration data. Results are shown for normally distributed data 
under light and heavy blinking in Extended Data Fig. 2, respectively. 
Our method is always superior on Wasserstein distance and image 
error (even when compared to iDTT_W), and superior in counting 
error when compared to iDTT_W.

To test MBC in dense scenarios, we repeat all experiments 
with five times the density, chosen to mimic the maximum den-
sity observed in any of the experimental data analyzed in this 
paper (2,500 proteins per 3,000 × 3,000 nm ROI). When it comes to 
denser scenarios, Bohrer et al.’s method can take 10 days per ROI, 
and optimizing over space and time thresholds to perform iDTT is 
also computationally demanding. However, MBC is still functional, 
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Fig. 2 | Comparison of MBC with the state of the art, with molecules on a fixed grid. a, Representative ground truth, blinking and corrected data (from 
one of n = 50 realizations). b–d, Wasserstein distances (b), image error (c), counting error (d), between corrected data and ground truth. b, The dashed 
horizontal line shows the 37 nm benchmark. c,d, The dashed horizontal line shows the optimal value 0. The columns show different blinking conditions  
(LB, light blinking and HB, heavy blinking) and correction methods (MBC, our method; Boh, Bohrer et al.’s method). Our method shows superior or 
comparable performance on all metrics. Box plots show median, 25th and 75th percentiles and minimum and maximum.
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and its performance is compared to DTT across all conditions and 
metrics in Extended Data Figs. 3 and 4. For DTT, we use parameters  
r equal to four times the mean localization uncertainty in space, and 
T determined for each ROI using the method of Annibale et al.4. For 
each of four scenarios; regular and CSR (Extended Data Fig. 3) and 
light clustering and heavy clustering (Extended Data Fig. 4), MBC 
substantially outperforms DTT in all three metrics (Wasserstein 
distance, image error and counting error).

Having established that MBC outperforms Bohrer et al.’s method 
and iDTT for recovery of ground truth in all conditions, at an 
extremely reduced computational cost, we proceed with compar-
ing our method only to DTT due to its simplicity, speed and wide 
uptake (including in commercial software).

Testing for complete spatial randomness. We next evaluate our 
algorithm for testing for complete spatial randomness of the under-
lying ground-truth proteins. In each run (n = 30 per condition), 500 
proteins were placed at random in a noiseless 3,000 × 3,000 nm ROI. 
For each ROI, we compute the function L(r) − r (Fig. 4b), where L is 
Besag’s L-function19, testing its maximum (Fig. 4c) under a CSR null 
hypothesis. The standard DTT correction method was unable to 
recover the ground-truth functions and resulted in rejection of the 
CSR null hypothesis in 24 and 30 out of the 30 regions, for light and 
heavy blinking respectively. On the other hand, MBC resulted in the 
CSR null hypothesis being rejected for two and four of the regions 
for light and heavy blinking, respectively. These numbers are within 
the expected range at a 5% confidence level. Thus, we were able to 
reliably test the CSR hypothesis using MBC, but not using DTT. The 
estimated total number of fluorescent proteins in each ROI is shown 
in Fig. 4d. Under CSR, DTT tends to overestimate the number of 
proteins in the ROI whereas MBC closely recovers the ground truth.

Cluster analysis. In this experiment, we demonstrate that a  
clustering algorithm can extract correct cluster descriptions from 

underlying clustered ground-truth protein distributions when 
coupled with MBC, and we compare performance with DTT. We 
simulated data from protein distributions exhibiting light and heavy 
clustering (n = 30 per condition), as described in the recovery of 
ground-truth section (Fig. 5a). We used Bayesian cluster analysis20,21 
for detection of clusters in MBC and DTT corrected datasets. Only 
under MBC could we consistently recover the ten clusters under 
varying degrees of blinking severity (Fig. 5b). The failure of DTT to 
recover the correct number of clusters is even more evident in the 
case of heavy clustering (Fig. 5c,d).

Determining optimal imaging conditions. As a final test using 
known ground-truth simulated data, we used Virtual-SMLM22 to 
simulate raw camera frames. This allowed us to test the effect of 
varying both the camera frame rate and the intensity of the 405 nm 
activation laser on the performance of MBC. A ground truth of 
CSR fluorescent proteins was simulated (Extended Data Fig. 5a), 
imaged using the virtual microscope and output analysis with 
ThunderSTORM. The camera integration time was set to either 
10 or 40 ms and the 405-nm laser intensity either kept constant, or 
ramped up to maintain a constant density of PSFs per frame over 
the course of the acquisition. Raw localizations (Extended Data  
Fig. 5a) were then corrected using MBC (Extended Data Fig. 5b). 
The Wasserstein distance shows marginally superior performance  
of the reconstruction when using a constant 405-nm laser power and 
when using longer 40 ms frames. We attribute this to the lower den-
sity of PSFs per frame in the constant 405 case leading to fewer over-
lapped PSFs during localization and to the increased localization 
precision offered by the longer frames (Extended Data Fig. 5c,d). 
The performance of MBC itself is only weakly dependent on the 
imaging conditions and, in each condition, we were able to recover 
the ground-truth number of molecules to within around 10% error 
(Extended Data Fig. 5e). We conclude therefore that when using 
MBC, PALM imaging conditions should be chosen to maximize 
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conventional notions of data quality—low density of PSFs and high 
signal-to-noise ratio. Because of this, we also conclude that MBC is 
also backward-compatible with all historically acquired PALM data.

Model validation. MBC is based on a statistical model for multiple 
blinking, camera discretization, localization error and a Bayesian 
prior distribution on the protein positions. In this section, we 
address concerns about model misspecification. First, we test our 
method on simulated data in which the multiple-blinking process 
follows a different model. Second, we test our method on NPC  
data in which there is a notion of ground truth, showing accurate 
recovery in a situation where the blinking dynamics have all the 
complexities of real fluorophores.

For the first experiment, the multiple blinking follows the 
three-dark-state photokinetic model shown in Jensen et al.9 with 
parameters rF = 0.005, rB = 2.5, rD1 = 4, rR1 = 0.25, rD2 = 4, rR2 = 1, 
rD3 = 4 and rR3 = 10 (the numeric part of the subscript indicates the 
dark-state number). Overall, this produces slightly more total blinks 
than our previous heavy blinking case. Extended Data Fig. 6 shows 
the results of MBC on normally distributed data perturbed by this 
multiple-blinking process. MBC still performs well when the blink-
ing shows the extra complexity of multiple dark states, still clearly 
outperforming DTT in this scenario. We believe the method should 
be robust, more generally, to misspecification of the blinking model 
as long as two assumptions can be made: first, the blinking behavior 
of different fluorophores is independent, and second, the process 
governing the blinking state switching is time-homogeneous.

Despite the performance on simulated data showing complex 
photoblinking behavior, real fluorophores in cells and experimental 
procedures such as imaging and localization have the potential to  
introduce many more complexities than we could simulate. We 
therefore investigate the performance of MBC on experimental  
reference data. We consider real biological cells from a recently 

developed cell line23 expressing the nucleoporin Nup96, which 
forms NPCs. These complexes have a well-characterized ring shape, 
composed of 32 Nup96 positioned into eight identical corners. 
Knowing that each ring holds 32 proteins allows us, in principle, to 
compare corrected counts to a ground-truth value.

We consider 16 independent recordings of cells expressing the 
fluorophore Nup96-mMaple, as available on the BioImage Archive. 
Following Thevathasan et al.23, we first filter out emitters of poor 
quality using the SMAP software24. In addition to filtering, SMAP 
also detects and segments out the NPCs present in each cell, and 
estimates the effective labeling efficacy (pele), the probability that a 
Nup96-mMaple is detected in the recording. For a given pele, which 
will vary for each recording, we can thus expect the number of 
detectable Nup96-mMaple in an NPC (NNPC) to have a binomial 
distribution NNPC ≅ Bin(32, pele).

After running MBC on each dataset, we cluster the corrected 
localizations into NPCs according to the closest NPC center. For 
each corrected NPC, we compute the number of localizations and 
divide by the pele relevant to that cell, to obtain a standardized count. 
Under an unbiased correction method this standardized count will 
have a mean value of 32 for all cells, allowing us to analyze and  
visualize all 16 cells simultaneously (Extended Data Fig. 7). By com-
parison to the theoretical distribution of ground-truth standard-
ized counts (corresponding to perfect recovery) we see that MBC is 
closely emulating this optimal distribution. The percentage error on 
the mean number of proteins per NPC between MBC and the ide-
alized case is only 1.1%, showing that MBC exhibits minimal bias. 
Our standard deviation is 6.16 and the ideal case is 4.6 (Bohrer et al. 
reported 11). Overall, experimental data acquired with a known 
ground truth show that MBC is accurate and unbiased in correcting 
multiple blinking, even through the full complexity of real fluoro-
phore photophysics confounded by potential imaging and localiza-
tion artifacts.

Ground trutha
C

S
R

LB LB–MBC LB–DTT HB HB–MBC HB–DTT

0 100 200

–10

10

30

50b

L(
r)

 –
 r

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

–10

10

30

50c

m
ax

 L
(r

) 
– 

r

500

2,000

10,000

–10

10

30

50

–10

10

30

50

500

2,000

10,000

–10

10

30

50

–10

10

30

50

500

2,000

10,000

–10

10

30

50

–10

10

30

50

500

2,000

10,000

–10

10

30

50

–10

10

30

50

500

2,000

10,000

–10

10

30

50

–10

10

30

50

500

2,000

10,000

–10

10

30

50

–10

10

30

50

500

2,000

10,000d

N
 m

ol
ec

ul
es

Fig. 4 | Testing for spatial randomness. a, Representative simulated data of ground-truth CSR points with light or heavy blinking either corrected by MBC 
or DTT as a comparison (n = 30 simulations). b, L(r) − r (mean in solid line) with pointwise 95% quantile bands (dashed line). c, max(L(r) − r) derived from 
these functions. Points in red correspond to ROI that were rejected as CSR in a Monte Carlo test (P < 0.05). Note that DTT often (and sometimes always) 
incorrectly rejects the CSR null hypothesis, whereas MBC does not. d, Number of molecules per ROI (log-scaled) showing superior correction of MBC 
compared to DTT in light and heavy blinking cases. Box plots show median, 25th and 75th percentiles and minimum and maximum. P values calculated 
based on one-sided Monte Carlo test using 10,000 CSR simulations.

Nature Methods | VOL 19 | May 2022 | 594–602 | www.nature.com/naturemethods598

http://www.nature.com/naturemethods


ArticlesNATUrE METHoDS

Analysis of experimental data. Nanoscale clustering is posited to 
play a role in regulating protein–protein interactions and therefore 
the efficiency of signal propagation along pathways25. T cell micro-
clusters of proximal signaling molecules have been widely docu-
mented by conventional microscopy26,27. Many have recently been 
studied by SMLM and shown to also cluster on the nanoscale12,13,28,29. 
This has proved controversial, however, with counter-proposals 
that, in some circumstances, proteins may in fact be randomly dis-
tributed on the cell surface, with observed clustering attributed to 
multiple-blinking artifacts11. For PALM data, MBC should enable 
researchers to navigate this controversy.

We analyzed the distribution of an adapter protein, the linker 
for activation of T cells (LAT)30, in the plasma membrane of the 
Jurkat CD4+ Helper T cell line at an artificial immune synapse 
formed against an activating, antibody coated coverslip (Methods). 
To assess the role of intracellular phosphorylation in maintaining 
this distribution, we also mutated intracellular tyrosine residues to 
phenylalanine (YF LAT). Both wild-type (WT) LAT and YF LAT 
were fused to the photoconvertible fluorescent protein mEos3.2 
with cells imaged under TIRF illumination. Raw localizations 
were obtained using ThunderSTORM and then corrected using 
MBC, with the average localization uncertainty across experiments 
reduced by 40.52%. The resulting corrected localizations were then 
tested for spatial randomness using the L-function, and any regions 
found to be clustered subjected to Bayesian cluster analysis20 (using 
default parameters).

Figure 6 shows WT and YF LAT-mEos3.2 from representa-
tive regions (from n = 12–25 ROI from three to six cells) acquired 
from the central regions of the cell synapse and from the synapse 
periphery, both before (Fig. 6a) and after (Fig. 6b) correction using 

MBC. Clearly, the large, dense clusters evident in the uncorrected 
data in all conditions are reduced in the corrected regions. However, 
by analyzing the L-function curves from the ROI (Fig. 6c) and 
extracting the maximum value of those curves (Fig. 6d), we were 
able to perform significance testing on whether the LAT distribu-
tions were truly CSR. For the two WT LAT conditions, the null 
hypothesis that LAT is randomly distributed was rejected in most 
regions. Therefore, it is likely that WT LAT was clustered in most 
analyzed WT ROI. This was not true for the YF mutant, however, 
with the null hypothesis of randomly distributed LAT not rejected 
in most peripheral regions (Fig. 6d). This therefore may point to  
a role of intracellular tyrosine phosphorylation in maintaining  
LAT clustering.

For all regions where the CSR null hypothesis was rejected, we 
then further interrogated the data using Bayesian cluster analysis. 
For WT LAT, the data showed no statistically significant difference 
in cluster membership between central and peripheral regions. 
However, the YF mutant showed a significant decrease in the 
number of molecules per cluster in peripheral regions, both when 
compared to YF central regions (P = 0.026) and WT peripheral 
regions (P = 0.001) (Fig. 6e). Other outputs from the cluster analysis 
are shown in Extended Data Fig. 8, with P values summarized in 
Supplementary Table 2. The decrease in cluster membership and, in 
some ROI, the loss of clustering altogether, in peripheral regions of 
the T cell synapse resulting from the YF mutation, is a strong indica-
tion that intracellular tyrosine phosphorylation is involved in main-
taining LAT signaling clusters. Signaling phosphorylation events 
are known to originate in the synapse periphery and it is therefore 
consistent that the effect of the mutation is most pronounced there, 
compared to the central region where signaling is terminated31.
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Discussion
Super-resolution fluorescence microscopy by SMLM, such as PALM, 
results in a pointillist dataset representing an attempted realization 
of the underlying ground-truth fluorophore locations1. A common 
goal in the biological sciences is to test whether such underlying 

distributions are clustered or randomly distributed and, if clustered, 
to determine their clustering properties. Achieving this has proved 
difficult, however, because the generated localizations are corrupted 
by artifacts, principally the repeated localization of the same fluoro-
phore due to multiple-blinking2. This has led to controversy about 
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whether proteins are truly clustered in cells, hindering our under-
standing of the causes and function of nanoscale protein clustering.

Here, we develop an algorithm, MBC, for correcting multiple 
blinking that requires no user input, no additional calibration data, 
and is not limited to a specific analysis goal. We show that it can be 
used to reliably test for spatial randomness or recover other cluster-
ing properties from the ground truth.

A number of methods have been put forward to test for spatial 
randomness in SMLM data. These include methods based on vary-
ing the labeling density and observing the effects on specific cluster 
analysis outputs32 or by labeling the same species with two different 
fluorophores allowing a cross-comparison to be made33. These, how-
ever, require multiple sample preparation rounds and are therefore 
more complex and time-consuming. Correction can also be made 
by measuring blinking behavior in a separate sample of well-isolated 
fluorophores8, but this again adds complexity and experimental 
effort and requires the assumption that probe photophysics are main-
tained between the sample and the calibration. It is also possible to 
measure or simulate multiple blinking using realistic photophysical  
models and use these to derive new CSR confidence intervals for  
the L-function curves34. It should be noted, however, that none of 
these methods produces a new set of corrected positions.

An approach with the same goal as ours is the method of  
Bohrer et al.10. We perform a comprehensive comparison to this 
approach, showing MBC achieves superior accuracy at a fraction 
of the computational cost. Performance gains are often substantial  
in both measures, for example, the method of Bohrer et al. can over-
count the number of proteins by up to a factor of two, and can take 
more than a week per ROI (where our method takes 2 minutes). 
MBC demonstrates a sufficiently accurate recovery of ground truth 
to reliably test the CSR hypothesis. MBC therefore represents a new 
capability: that of obtaining a set of corrected ground-truth loca-
tions of sufficient quality so that any subsequent statistical analysis 
can be conducted with assurance.

The limitations of MBC are as follows. The method is only appli-
cable to photophysical models typical of PALM acquisitions, and 
therefore cannot be used to correct dSTORM or other SMLM modal-
ities. Performance of the correction will decrease as the clustering of 
the ground-truth increases, however, it tested favorably with realistic 
and heavily clustered scenarios. The method also adds computa-
tional time to any analysis pipeline. For a 3,000 × 3,000 nm ROI con-
taining 500 ground-truth proteins, we estimate the MBC step to take 
2–4 minutes per ROI on a standard desktop computer. Of course, as it 
results in fewer points per ROI, subsequent analysis will typically be 
accelerated. While here the correction is limited to two-dimensional 
(2D) data, it can in principle be adapted to 3D (x,y,z) coordinates. In 
this case, the algorithm would need to take account of the differing 
localization precision in z and potentially the lower detection effi-
ciency of proteins deeper into the sample. Of course, there are many 
other sources of potential error in SMLM other than multiple blink-
ing. These include low detection efficiency35,36, endogenous expres-
sion, overlapped PSFs, drift and so on, which are not addressed by 
MBC. The resulting point patterns generated by MBC should there-
fore still be interpreted with these in mind.

In conclusion, MBC allows for accurate recovery of ground-truth 
fluorophore positions, with enhanced precision, from PALM data-
sets subjected to multiple-blinking artifacts. Corrected sets are of 
sufficient quality to allow accurate cluster analysis and the statistical 
testing for complete spatial randomness. We therefore believe that 
PALM combined with MBC will be an invaluable tool for address-
ing questions on the existence, determinants and functions of  
protein nanoscale clustering.
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Methods
Sample preparation. For LAT images, Jurkat E6.1 cells (ECACC 88042803) 
expressing LAT-mEos3.2 (WT LAT, or signaling deficient mutant, YF LAT) were 
introduced to anti-CD3 (at 2 μg ml−1; eBioscience clone OKT3, 16-0037-81) 
and anti-CD28 (at 5 μg ml−1; RnD Systems, clone CD28.2, 16-0289-85) coated 
glass-bottomed chamber slides (no. 1.5 glass, ibidi μSlides) at 50 × 103 cells per cm2  
in warm Hanks’ balanced salt solution and incubated at 37 °C for 5 min to 
allow for synapse formation. The chamber wells were gently washed with 
warm Hanks’ balanced salt solution and then fixed in 3% paraformaldehyde in 
phosphate-buffered saline (PBS) for 20 min at 37 °C. Fixed cells were washed five 
times in PBS and used immediately for PALM imaging.

Imaging. PALM image sequences were acquired on a Nikon N-STORM system in 
a TIRF configuration using a ×100 1.49 numerical aperture (NA) CFI Apochromat 
TIRF objective for a pixel size of 160 nm and running NIS Elements software v.4.6. 
Samples were continuously illuminated with 561 nm laser light at approximately 
2 kW cm−2 and 405 nm laser light (to induce photo-conversion) at approximately 
2 W cm−2. Images were recorded on an Andor IXON Ultra 897 EMCCD with 
an electron multiplier gain of 200 and pre-amplifier gain profile 3 to a centered 
256 × 256 pixel region at 40 ms per frame for 5,000 to 15,000 frames.

Virtual microscope simulations. Raw camera frames were generated using 
Virtual-SMLM22 operating in PALM mode (that is, using a four-state photophysical 
model). The frame rate was set to 25 or 100 frames per second. The activation laser 
(that is, initial state transition) was either fixed or ramped up over the acquisition. 
In the first case, the number of fluorophores emitting per frame decreases over 
time. In the second case, it remains constant over the acquisition. Emission traces 
were generated independently for each fluorophore and imaging continued until all 
fluorophores had been imaged and bleached. All other state transition probabilities 
and photophysics properties were fixed to mimic mEos blinking characteristics. The 
PSFs were recorded on a virtual EMCCD camera, with an electron microscopy gain 
fixed at 300. Virtual-SMLM took as input ground-truth maps of mEos2 positions. 
Then 5,556 mEos proteins were placed randomly over a 10,000 × 10,000 nm 2D 
area. Generated camera frames were then analyzed using ThunderSTORM and the 
data cropped into nonoverlapping 3,000 × 3,000 nm regions.

Localization. Localizations of fluorophore coordinates were reconstructed using 
ThunderSTORM14 and corrected for sample drift using cross-correlation of images 
from five bins at a magnification of five. No further postprocessing was performed.

Mathematical details. Marginal likelihood of clusters. We represent the observed 
process by a series of localizations (Xi, Yi)

n
i=1 ∈ R with associated ‘blink’ times 

T1, …, Tn, and localization uncertainties σ2
1, …, σ2

n, where R = [x0, x1] × [y0, y1] 
is the ROI. For a given partition of the localizations into groups, we compute 
the marginal likelihood of the data as follows. Consider a group comprising the 
observations 1, …, m, with 1 ≤ m ≤ n, posited to correspond to one, distinct 
molecule. In particular, we defer until later the treatment of background noise. 
The independence assumptions set out in the main article result in the following 
marginal likelihood factorization:

p
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m
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Denoting by μ = (μX, μY) the true position of the molecule, the spatial 
components above have a likelihood (given only for (Xi)

m
i=1)
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where ηi = 1/σ2
i . Defining the weighted mean
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Placing a uniform prior on μX, we find
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The temporal component has likelihood

p
(

(Ti)
m
i=1

)

= p (u) p (Tmin)
∏

k

p (fk)
∏

k

p (dk) ,

where each term is computed as follows. The blink times T1,…,Tm are not typically 
observed exactly, and instead one has access only to associated frame numbers 
F1,…,Fm, taken to represent (small) windows of time containing them. We therefore 
consider a visit to the fluorescent state to be a block of L ≥ 1 contiguous fluorescent 
frames (or consecutive frame numbers), and impute the length of this visit to be  
the time elapsed over L − 1 frames, to obtain auxiliary quantities

fk : time spent in fluorescent state (kth visit) .

Up to discrete approximation error, each fk represents the minimum of two 
exponential random variables with respective rates rD and rB, with likelihood 
contribution

p (fk) = (rD + rB) e−(rD+rB)fk .

Similarly, let dk denote the time elapsed over the kth interval between noncontiguous 
frames, taken to represent dk: time spent in dark state (kth visit). The likelihood 
contribution is

p (dk) = rRe−rRdk rD
rD + rB

.

The initial switch of the fluorophore to the activated state happens at time Tmin, 
computed simply as the minimum Ti value, and this contributes

p (Tmin) = rFe−rFTmin ,

to the likelihood.Finally, let u denote the time since the last blink (a period during 
which it is unknown whether the process has entered a dark or bleached state).  
The final contribution is

p (u) =
rD

rB + rD
e−rRu +

rB
rB + rD

To finalize calculations, one must account for background noise (in the case of 
m = 1). Such points are assumed to be uniform in space–time. The complete 
marginal likelihood is
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m > 1

m = 1

where V = T (x1 − x0) (y1 − y0) , T is the length of the period of observation  
and α is the background probability.

Identifying and summarizing clusters. For both MBC and DTT clustering, an 
expected number of clusters, N, is first estimated, and a version of AHC is then 
used to partition the dataset into N clusters. In AHC, each point is initially 
considered to be a distinct cluster. Using a user-specified metric and a linkage 
criterion, a stepwise greedy merging of the closest clusters is repeated until a 
partition with a predetermined number of clusters is obtained, or until no more 
clusters can be merged with a distance less than some specified number. The 
metric determines the distances between pairs of points, and the linkage criterion 
generalizes these to a distance between clusters. Once the final partition has been 
identified, we merge each cluster down to its estimated center, and the uncertainty 
of the center is computed. In the following, we use the notation

L = (X, Y)

dl (L1, L2) =

√

(X1 − X2)
2 + (Y1 − Y2)

2

dT (T1, T2) = |T1 − T2|

MBC clustering. For MBC, the number of desired clusters, N, is an output of the 
rate-estimation step, and is thus decoupled from the clustering problem. For the 
AHC step, we use the family of metrics

ds ((L1, T1) , (L2, T2)) =
dl (L1, L2)
(σ1 + σ2)

+ Sdt (T1, T2)

For S ≥ 0, which is simply the sum of the Euclidean distance between the locations 
and (scaled) times. For the linkage criterion we chose Ward’s Minimum Variance 
Method, as implemented via the Lance–Williams formula18, as it tends to find 
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homogeneous clusters of spherical shape.By varying S along a grid, we obtain a 
sequence of partitions, each slightly different but all chosen to have N clusters. By 
evaluating the marginal likelihood for the partitions obtained at each value of S,  
we then pick the most likely partition among those considered.

DTT clustering. DTT is a general idea in SMLM blinking correction literature, 
but implementation details are rarely discussed. The general principle is to merge 
locations that are close in space and time, with hard thresholds on the maximally 
allowed bridging distances in space and time. As a way to implement this idea in 
the AHC framework, we define the distance between two observations as

dτs ,τt ((L1, T1) , (L2, T2))

= dl (L1, L2) + dt (T1, T2) + ∞ · 1 (dl (L1, L2) > τs or dt (T1, T2) > τt)

where ∞ · 0 = 0. Although not strictly a metric, this distance measure allows 
us to implement the DTT idea. We use the single-linkage criterion for cluster 
merging, which considers the distance between two clusters to be the smallest 
pairwise distance between them. Combined with our metric, this means that the 
clustering algorithm is allowed to merge points and clusters, so long as they can 
be combined via paths that do not violate the hard thresholds. Finally, a clustering 
is achieved by continuing to merge clusters until only infinite distances between 
clusters remain (no more legal merges can be made). For τs, we used four times 
the mean localization uncertainty. The temporal threshold, τt, was determined as 
follows. First, the method of Annibale et al. was used to determine N4. Next, τt was 
increased incrementally until the AHC algorithm produced a partition with  
N clusters, or as close to N as possible.

Cluster centers and uncertainty
Let (Xi, Yi)

m
i=1 be the coordinates of an arbitrary cluster with center μ. Once 

a particular clustering is given, it makes sense to treat the cluster centers as fixed 
parameters to be estimated. Thinking therefore of μ as fixed, the maximum 
likelihood estimator, μ̂, maximizes the likelihood of the cluster coordinates

log (p)
{

(Xi, Yi)
m
i=1

}

= −

∑

ηi
2

(

(

μX − X̃
)2

+
(

μY − Ỹ
)2
)

+ C

where C does not depend on μ and it follows immediately that

μ̂ =
(

X̃, Ỹ
)

=

(∑

ηiXi
∑

ηi
,
∑

ηiYi
∑

ηi

)

.

Using μ̂, we can estimate the position of the molecule associated with a given 
cluster. As the coordinates of μ̂ are i.i.d., the covariance matrix of μ̂ is given as

V [μ̂] = σ̃2I2 where I2 is the 2 × 2 identity matrix, and

σ̃
2
= V

[

X̃
]

=

∑

η2i σ2
i

(
∑

ηi)
2 =

1
∑ 1

σ2
i

And the updates localization uncertainty is then simply the associated standard 
deviation

σ̃ =
1

√

∑ 1
σ2
i

Justification of optimization strategy. It may seem wasteful to correct the 
localizations in two steps rather than a more integrated approach. However, if, 
in a single step, we optimize the model likelihood for blinking parameters and 
data partitions simultaneously, the maximum likelihood clustering overfits in 
a catastrophic way, giving each position its own cluster and fitting a degenerate 
blinking model (infinite bleach rate). A more sophisticated attempt would be to 
take a fully Bayesian approach, with priors on the blinking dynamics, but this has 
two disadvantages: the first is added and potentially catastrophic sensitivity to 
model misspecification, for example, multiple dark states; second, this approach 
introduces substantial computational issues, which can only be addressed by 
further layers of approximation (for example, Monte Carlo or variational inference) 
and analysis parameters (burnin, runtime, step-size and so on). The convergence of 
Markov Chain Monte Carlo is highly uncertain in any Bayesian clustering problem: 
to quote an influential source, ‘Although we may be presumptuous, we consider 
that almost the entirety of Markov chain Monte Carlo samplers implemented for 
mixture models has failed to converge!’37.

We now demonstrate that, once the blinking parameters are estimated and 
held fixed, (1) the likelihood does not overfit the data partition, and (2) our simple 
search strategy gets close to the optimum. To do this, we implement a more flexible 

clustering approach, Bayesian hierarchical clustering (BHC), in which clusters are 
greedily merged according to the largest increase in likelihood. Despite an efficient 
implementation, for example exploiting the Lance–Williams update, this algorithm 
is too time costly to be suggested for general use, but it provides a benchmark for 
the performance that could be obtained with a more involved approach and more 
computational power. In Supplementary Fig. 2, we show the likelihood obtained 
by BHC in a range of different conditions, noting that the algorithm starts with a 
partition separating all points and ends with all points in one partition (so obtains 
a likelihood for every possible number of clusters). We observe that (1) the highest 
likelihood partition found by BHC does not routinely overfit (overestimate the 
number of clusters) and (2) the likelihood of the MBC and BHC solutions are 
close. MBC and BHC are also comparable in terms of other metrics (for example, 
each wins roughly half the time in Wasserstein distance).

Significance testing. The P values reported in Supplementary Table 2 are based 
on a two-sided permutation test of the absolute difference of means, using 10,000 
simulations.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
A data simulator to recapitulate simulated data conditions and raw experimental 
data (point clouds) are available at https://github.com/Louis-Jensen/MBC-for-PALM. 
Raw experimental data (camera frames) available upon request. Source data are 
provided with this paper.

Code availability
MBC code is available as Supplementary Material together with installation 
instructions and example simulated datasets. MBC code is also available at  
https://github.com/Louis-Jensen/MBC-for-PALM.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Comparison of MBC with the state-of-the-art for the case of CSR and clustered molecules. a) Representative ground truth, 
blinking and corrected data (from one of n = 30 realisations) for CSR molecules. b,c,d) Wasserstein distances (b), image error (c), counting error (d), 
between corrected data and ground truth. In b), the dashed horizontal line shows the 37 nm benchmark and c,d) the dashed horizontal line shows the 
optimal value 0. The columns show different blinking conditions (LB: light blinking, HB: heavy blinking) and correction methods (MBC: our method, Boh: 
Bohrer et al.’s method). Our method has superior performance on all metrics except counting error for the light blinking case. e) Representative ground 
truth, blinking and corrected data (from one of n = 30 realisations) for clustered molecules. f,g,h) Wasserstein distances (f), image error (g), counting error 
(h), between corrected data and ground truth. In f), the dashed horizontal line shows the 37 nm benchmark and c,d) the dashed horizontal line shows the 
optimal value 0. The columns show different blinking conditions (LB: light blinking, HB: heavy blinking) and correction methods (MBC: our method, Boh: 
Bohrer et al.’s method). Our method has superior performance on all metrics except counting error for the light blinking case. Box plots show median,  
25th and 75th percentiles and min, max.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Comparison of MBC with idealized DTT, with molecules on a fixed grid with light (LB) and heavy (HB) blinking. a) Representative 
ground truth, blinking and corrected data (from one of n = 50 realisations) with light blinking. b,c,d) Wasserstein distances (b), image error (c), counting 
error (d), between corrected data and ground truth. In b), the dashed horizontal line shows the 37 nm benchmark and c,d) the dashed horizontal line 
shows the optimal value 0. The columns show different correction methods (MBC: our method, iDTT_N: DTT minimising counting error; iDTT_W: DTT 
minimising Wasserstein distance). Our method is always superior on Wasserstein distance and image error, and comparable in counting error when 
compared to iDTT_W. e) Representative ground truth, blinking and corrected data (from one of n = 50 realisations) for heavy blinking. f,g,h) Wasserstein 
distances (f), image error (g), counting error (h), between corrected data and ground truth. In f), the dashed horizontal line shows the 37 nm benchmark 
and c,d) the dashed horizontal line shows the optimal value 0. The columns show different correction methods (MBC: our method, iDTT_N: DTT 
minimising counting error; iDTT_W: DTT minimising Wasserstein distance). Our method is always superior on Wasserstein distance and image error, and 
comparable in counting error when compared to iDTT_W. Box plots show median, 25th and 75th percentiles and min, max.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Comparison of MBC with DTT for regular and CSR molecules. a) Representative ground truth for 2500 molecules on a fixed grid, 
blinking and corrected data (from one of n = 50 realisations). b–d) Wasserstein distances (b), image error (c), counting error (d), between corrected data 
and ground truth. In b), the dashed horizontal line shows the 37 nm benchmark and c,d) the dashed horizontal line shows the optimal value 0. The columns 
show different blinking conditions (LB: light blinking, HB: heavy blinking) and correction methods. Our method has superior performance on all metrics.  
e) Representative ground truth for 2500 CSR molecules, blinking and corrected data (from one of n = 30 realisations). f-h) Wasserstein distances (f), 
image error (g), counting error (h), between corrected data and ground truth. In b), the dashed horizontal line shows the 37 nm benchmark and g,h) the 
dashed horizontal line shows the optimal value 0. The columns show different blinking conditions (LB: light blinking, HB: heavy blinking) and correction 
methods. Our method has superior performance on all metrics. Box plots show median, 25th and 75th percentiles and min, max.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Comparison of MBC with DTT for clustered molecules. a) Representative ground truth for 10 clusters of 50 molecules and 2000 
CSR molecules, blinking and corrected data (from one of n = 30 realisations). b-d) Wasserstein distances (b), image error (c), counting error (d), between 
corrected data and ground truth. In b), the dashed horizontal line shows the 37 nm benchmark and c,d) the dashed horizontal line shows the optimal value 0. 
The columns show different blinking conditions (LB: light blinking, HB: heavy blinking) and correction methods. Our method has superior performance 
on all metrics. e) Representative ground truth for 10 clusters of 200 molecules and 500 CSR molecules, blinking and corrected data (from one of n = 30 
realisations). f-h) Wasserstein distances (f), image error (g), counting error (h), between corrected data and ground truth. In b), the dashed horizontal  
line shows the 37 nm benchmark and g,h) the dashed horizontal line shows the optimal value 0. The columns show different blinking conditions  
(LB: light blinking, HB: heavy blinking) and correction methods. Our method has superior performance on all metrics. Box plots show median, 25th and  
75th percentiles and min, max.
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Extended Data Fig. 5 | MBC Performance as a function of camera frame rate and the activating, 405 nm laser power. a) Example ground-truth and raw 
localisation maps for the different conditions (n = 30 relisations). b) Example MBC-corrected maps. c) Wasserstein distances. d) Normalised histograms 
of localisation uncertainty. e) Counting error in estimated number of ground-truth molecules (mean in dashed line). Box plots show median, 25th and 75th 
percentiles and min, max.
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Extended Data Fig. 6 | Comparison of MBC with DTT, with molecules on a fixed grid with blinking dynamics following a three-dark-state model.  
a) Representative ground truth, blinking and corrected data (from one of n = 50 realisations). b–d) Wasserstein distances (b), image error (c), counting 
error (d), between corrected data and ground truth. In b), the dashed horizontal line shows the 37 nm benchmark and c,d) the dashed horizontal line 
shows the optimal value 0. The columns show different correction methods. Our method shows superior performance on all metrics. Box plots show 
median, 25th and 75th percentiles and min, max.
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Extended Data Fig. 7 | Correction of NPC counts, after accounting for effective labeling efficacy. Histogram of the number of MBC-recovered proteins 
per NPC (n = 8146), corrected for effective labeling efficacy (red), with mean indicated by the red vertical line, and a kernel density estimate shown as the 
red curve. For comparison, a histogram of an equally-sized sample of counts under perfect correction is shown in black, with mean indicated by the black 
vertical line, and kernel density estimate as the black curve.
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Extended Data Fig. 8 | Additional statistics from the Bayesian cluster analysis of non-CSR LAT-mEos3.2 regions. a) Number of detected clusters,  
b) cluster radii (nm), c) percentage of molecules in clusters, d) number of molecules per ROI and e) relative density of molecules located in clusters as 
compared to the surrounding region. Box plots show median, 25th and 75th percentiles and min, max. n-numbers = 14 (WT centre), 11 (WT periphery),  
8 (YF centre) and 12 (YF periphery).
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