Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Parallel MRI
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

3D BPConvNet to Reconstruct Parallel MRI

K.H. Jin, M. Unser

Proceedings of the Fifteenth IEEE International Symposium on Biomedical Imaging (ISBI'18), Washington DC, USA, April 4-7, 2018, pp. 361-364.


In recent years, compressed sensing techniques have been applied to the reconstruction of parallel magnetic resonance (MR) images. Particularly for 3D MR signal, it is crucial to acquire fewer samples to reduce the distortions caused by long-time acquisitions (e.g., motion, organ dynamics). Motivated by the recent success of ConvNet in 2D image reconstruction, we propose to extend the approach to 3D volume reconstruction and parallel MR imaging. The structure of the proposed network follows FBPConvNet with additional coil compression by SSoS and wavelet transform. A parallelism using two GPUs is also applied to overcome the memory shortage. The proposed method is able to reconstruct a (320 × 320 × 256 × 8) volume in less than 10s with 2 GPUs, while the iterative algorithm ℓ1-ESPIRiT takes over 5 min in CPU.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/jin1802.html,
AUTHOR="Jin, K.H. and Unser, M.",
TITLE="{3D} {BPConvNet} to Reconstruct Parallel {MRI}",
BOOKTITLE="Proceedings of the Fifteenth IEEE International Symposium on
	Biomedical Imaging: From Nano to Macro ({ISBI'18})",
YEAR="2018",
editor="",
volume="",
series="",
pages="361--364",
address="Washington DC, USA",
month="April 4-7,",
organization="",
publisher="",
note="")

© 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved