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Abstract—We investigate a stochastic signal-processing frame-
work for signals with sparse derivatives, where the samples of a
Lévy process are corrupted by noise. The proposed signal model
covers the well-known Brownian motion and piecewise-constant
Poisson process; moreover, the Lévy family also contains other
interesting members exhibiting heavy-tail statistics that fulfill
the requirements of compressibility. We characterize the max-
imum-a-posteriori probability (MAP) and minimum mean-square
error (MMSE) estimators for such signals. Interestingly, some of
the MAP estimators for the Lévy model coincide with popular
signal-denoising algorithms (e.g., total-variation (TV) regular-
ization). We propose a novel non-iterative implementation of the
MMSE estimator based on the belief-propagation (BP) algorithm
performed in the Fourier domain. Our algorithm takes advantage
of the fact that the joint statistics of general Lévy processes are
much easier to describe by their characteristic function, as the
probability densities do not always admit closed-form expressions.
We then use our new estimator as a benchmark to compare the
performance of existing algorithms for the optimal recovery of
gradient-sparse signals.

Index Terms—Belief propagation, Lévy process, message
passing, nonlinear reconstruction, sparse-signal estimation, sto-
chastic modeling, total-variation estimation.

I. INTRODUCTION

E STIMATION of signals from incomplete or distorted
measurements is a fundamental problem in signal pro-

cessing. It inevitably arises during any realistic measurement
process relying on some physical acquisition device.
Consider the problem of estimating a signal from a

noisy vector where the components of are
independent and distributed with a known probability distribu-
tion. If we suppose that the components of the vector are also
independent, then the estimation problem becomes separable
and reduces to scalar estimation problems. In practice, how-
ever, due to correlations between the components of , simple
pointwise techniques are suboptimal and more refined methods
often perform significantly better. In this paper, we consider the
problem of estimating signals that have sparse derivatives. We

Manuscript received March 08, 2012; revised June 21, 2012 and September
07, 2012; accepted September 17, 2012. Date of publication October 03, 2012;
date of current version December 12, 2012. The associate editor coordinating
the review of this manuscript and approving it for publication was Dr. Benoit
Champagne. This work was supported by the European Commission by Grant
ERC-2010-AdG 267439-FUN-SP.
The authors are with the Biomedical Imaging Group, École polytechnique

fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland (e-mail:
ulugbek.kamilov@epfl.ch; pedram.pad@epfl.ch; arash.amini@epfl.ch;
michael.unser@epfl.ch).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2012.2222394

take a continuous-domain perspective and propose Lévy pro-
cesses [1]–[4] as a natural approach to model such signals. The
fundamental defining property of a Lévy process is that it has
independent and stationary increments. Therefore, the applica-
tion of a finite-difference operator on samples of a Lévy process
decouples it into a sequence of independent random variables.
Interestingly, the class of Lévy processes is in one-to-one cor-
respondence with the class of infinitely divisible distributions.
Such distributions typically exhibit a heavy-tail behavior that
has recently been proven to fulfill the requirements of compress-
ibility [5], [6]. Therefore, Lévy processes can be considered as
the archetype of sparse stochastic signals [3].

A. Contributions

Many recent algorithms for the recovery of sparse signals can
be interpreted as maximum-a-posteriori (MAP) estimators re-
lying on some specific priors. From this Bayesian perspective,
state-of-the-art methods based on gradient regularizers, such
as total-variation (TV) [7] minimization, implicitly assume the
signals to be sampled instances of Lévy processes [8]. In this
paper, we investigate a minimum-mean-squared-error (MMSE)
estimator for Lévy processes. The estimator provides a lower-
bound on the mean-squared error (MSE) for the problem of re-
covery of gradient-sparse signals. Unfortunately, due to high-di-
mensional integration, MMSE estimators are computationally
intractable for general signals. By considering the Lévy signal
model, we propose a novel method for computing the MMSE
estimator based on the belief-propagation (BP) algorithm on
cycle-free factor graphs [9]–[11].
The main contributions of this work are as follows:
• Bayesian formulation of the signal-recovery problem
under the Lévy hypothesis for a general “signal+noise”
measurement model. With this formulation, we are able to
derive an equivalence between MAP estimators for Lévy
processes and some existing algorithms for the recovery
of sparse signals.

• Characterization of the MSE optimal solution and the
determination of performance bounds. We show that the
MMSE estimator can be computed directly with the BP
algorithm. The algorithm also obtains the marginals of
the posterior distribution, which allows us to estimate
the MSE of the reconstruction and to provide confidence
intervals.

• Development of a novel frequency-domain mes-
sage-passing algorithm specifically tailored to the MMSE
estimation of Lévy processes. Some of the sparsest priors
considered here do not have closed-form probability den-
sity functions. Indeed, they are represented in terms of
their characteristic function obtained by the Lévy-Khint-
chine theorem [1], [2]. The frequency-domain algorithm
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Fig. 1. Signal model considered in this work. The continuous-domain Lévy
process is sampled, and the resulting vector is passed through a
separable measurement channel to yield . We investigate the
estimation of interpolated vectors , from the noisy measure-
ments .

allows us to use the characteristic function directly without
any numerical inversion.

• Experimental evaluation and comparison with standard so-
lutions such as LMMSE, -minimization, and -relax-
ation [12]. In particular, the availability of MMSE allows
us to benchmark these estimators on signals with desired
properties such as sparsity.

B. Outline

The paper is organized as follows: In Section II, we introduce
our signal and measurement model. In particular, we review the
theory of Lévy processes and their connection to sparse esti-
mation. In Section III, we characterize the Bayesian MAP and
MMSE estimators. In Section IV, we illustrate the connections
between the MAP estimator for Lévy processes and standard
variational approaches. In Section V, we provide closed-form
formulae for evaluating the MMSE under the assumption of ad-
ditive white Gaussian noise (AWGN). In Section VI, we present
the BP algorithm as an efficient way to compute the MMSE es-
timator. We then introduce a new frequency-domain algorithm
particularly well suited for Lévy processes. In Section VII, we
provide numerical experiments demonstrating the applications
of the method.

Notations

Throughout the paper, we typeset matrices in an uppercase
boldface, vectors in a lowercase boldface, and scalars in italic
typeface. Random and deterministic quantities are not dis-
tinguished typographically. We use and to indicate
probability distribution functions (pdf), and and to
denote the corresponding characteristic functions. The pdf of a
Gaussian random variable will often be denoted

as . The symbol indicates equality in distribution

so that, for any two random variables, we have that if
for all .

II. SIGNAL AND MEASUREMENT MODEL

In this section, we describe the signal model summarized in
Fig. 1. We first give a powerful, yet simple continuous-domain
stochastic formulation of the signal. The one-to-one mapping
between our model and the extended family of infinitely di-
visible distributions is discussed. We finally describe the mea-
surement model and provide examples of typical measurement
channels.

A. Lévy Processes

Stochastic processes are often used to model random signals,
the Brownian motion and the Poisson process being the two

most common examples. Lévy processes—often seen as ana-
logues of random walks in continuous time—extend those two
processes to a larger family of distributions. They represent a
fundamental and well-studied class of stochastic processes [1],
[2]. Let be a continuous-time stochastic process.
It is called a Lévy process if
1) almost surely;
2) for each and the
random variables are
independent;

3) for each , the random variable
is equal in distribution to ;

4) for all and for all

Together, Properties 2) and 3) are commonly referred to as the
stationary-independent-increments property, while Property 4)
is called the stochastic continuity.
One of the most powerful results concerning Lévy processes

is that they are in one-to-one correspondence with the class of
infinitely divisible probability distributions. The random vari-
able is said to be infinitely divisible if, for any positive ,
there exist i.i.d. random variables such that

In other words, it must be possible to express the pdf as the
-th convolution power of . In fact, it is easy to show that the
pdf of the increment of length of any
Lévy process is infinitely divisible

where each

The increments are of length and are i.i.d. by the
stationary-independent-increments property. Conversely, it has
also been proved that there is a Lévy process for each infinitely
divisible probability distribution [1].
The fundamental Lévy-Khintchine formula provides the char-

acteristic function of all infinitely divisible distributions: is
an infinitely divisible probability distribution if and only if its
characteristic function can be written as

where , and where is an indicator function.
The function is the Lévy density satisfying

The representation of by a triplet is unique.
In this paper, we limit our attention to even-symmetric pdfs
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which results in the simplified Lévy-
Khintchine formula

(1)

B. Examples of Lévy Processes

We now give examples of a few Lévy processes that are par-
ticularly interesting for us. Sample paths of these processes are
summarized in Fig. 2. Without loss of generality, we assume an
increment for some fixed .
1) Brownian Motion: By setting and choosing the Lévy
density , we obtain the familiar Brownian motion
that has stationary independent increments characterized
by

(2)

with . This implies that the increments of the resulting
Lévy process are Gaussian random variables with mean 0
and variance , which corresponds to . We
illustrate in Fig. 2(a) a single realization of a Brownian
motion.

2) Compound Poisson Process: Let be a se-
quence of i.i.d. random variables with distribution and
let be a Poisson process of intensity

that does not depend on any . The compound
Poisson process is then defined as

for each . This is a Lévy process obtained by setting
the parameter triplet to , which re-
sults in the characterization of increments

(3)

where is the Fourier transform of . On finite intervals,
the sample paths of the process are piecewise-constant
(Fig. 2(b)), while the size of the jumps is determined by
[2]. Compound Poisson processes are piecewise-con-

stant signals for which TV-like estimation algorithms are
well suited [13]. The parameter controls the sparsity
of the signal; it represents the rate of discontinuities.
Compound Poisson processes are of special importance
in the Lévy-Ito decomposition of Lévy processes. This
decomposition expresses any Lévy process as the sum of
three processes, one being a Brownian motion and another
being Compound Poisson. More details are provided in
Appendix I.

3) Laplace Increment Process: The Lévy process with
Laplace-distributed increment is obtained by setting
the parameter triplet to , which
results in

(4)

Fig. 2. Sample paths of Lévy processes discussed in this paper.

where is the scale parameter of the Laplace distri-
bution. To obtain the characteristic function (4), we remark
that

Then, by differentiation with respect to and integrating
back using the condition , we obtain (4). The
corresponding pdf is

(5)

An interesting observation is that the Bayesian MAP inter-
pretation of the TV regularization method with a first-order
finite-differences operator inherently assumes the under-
lying signal to be a Lévy process with Laplace increments.
We give in Fig. 2(c) an illustration of such a process.

4) Lévy-Flight Process: Stable random variables are such
that a linear combination of two independent ones results
in a third stable random variable [1]. In the symmetric
case, they are often referred to as symmetric -stable
random variables and written as , where

is the stability parameter. It is possible to
generate a Lévy process with -stable increments by
setting , which results in

(6)

with and . Such distributions are heavy-
tailed and are known to result in highly compressible se-
quences [6]. A sample signal generated from a Cauchy-in-
crement Lévy flight, which corresponds to the -stable
process with , is illustrated in Fig. 2(d).

C. Innovation Modeling

Recently, an alternative system-theoretic formulation of Lévy
processes was proposed in the context of the general theory
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of sparse stochastic processes [3], [4]. The authors specify the
Lévy process as the solution of the stochastic
differential equation

(7)

where the differentiation is interpreted in the weak sense of dis-
tributions. The process is a non-Gaussian white noise referred
to as a continuous-time innovation process. According to the
formalism developed in [3], the Lévy process is then generated
by integrating the white noise according to

(8)

which provides a convenient linear-system interpretation. The
only delicate aspect of this interpretation is that the white noise
must be considered as a tempered distribution, since it is too
rough to admit a classical interpretation as a function of . The
result confirms that, for all positive , the quantities

(9)

are i.i.d. random variables that can be seen as discrete innova-
tions. The symbol denotes an inner product between two
functions, is the finite-difference operator, and is the
rectangular function, which is 1 inside the interval
and zero outside. The fundamental observation is that the incre-
ment is obtained by applying the discrete version of the deriva-
tive to , in an attempt to emulate (7) using discrete means
only.

D. Measurement Model

Consider the measurement model illustrated in Fig. 1. The
vector contains the uniformly sampled values of

(10)

where is the sampling interval. The components of
are generated by a separable measurement channel given by the
conditional probability distribution

(11)

The measurement channel models distortions affecting the
signal during the acquisition process. This paper addresses the
computation of the estimator of the vector on some
uniform grid

(12)

where is the interpolation interval. We wish to min-
imize the squared-error of the reconstruction in the situations
when for some positive . This implies
that in general . In other words, we seek more esti-
mates than there are samples. The special case re-
duces the problem to signal denoising. In the sequel, we assume

and set to simplify the expres-
sions. In particular, this implies that for any we have

for all .
The generality of the measurement channel allows us to

handle both signal-dependent and -independent distortions.
Some common noise models encountered in practice are
1) Additive White Gaussian Noise: The measurements in the
popular AWGN noise model are given by , where

is a signal-independent Gaussian vector with i.i.d
components . The transitional
probability distribution then reduces to

(13)

2) Scalar Quantization: Another common source of signal
distortion is the analog-to-digital converter (ADC). When
the conversion corresponds to a simple mapping of the
analog voltage input to some uncoded digital output, it can
be modeled as standard AWGN followed by a lossy map-
ping . The nonlinear function is often called
a -level scalar quantizer [14]. It maps the -partitions
of the real line into the
set of discrete output levels . This
channel is signal-dependent. It is described in terms of the
transitional probability distribution

(14)

where denotes a single
partition.

III. BAYESIAN FORMULATION

We now specify explicitly the class of problems we wish to
solve and identify corresponding statistical estimators. Consider
the vector obtained by applying the finite-difference
matrix to , whose components are given in (12). Then, from
the stationary independent increments property of Lévy pro-
cesses the components

(15)

of the vector are realizations of i.i.d. random variables char-
acterized by the simplified Lévy-Khintchine formula (1). Note
that, from the definition of the Lévy process we have .We
construct the conditional probability distribution for the signal
given the measurements as

(16)

where we use to denote identity after normalization to
unity. The distribution of the whitened elements is, in
principle, obtained by taking the inverse Fourier transform

; however, it does not necessarily admit
a closed-form formula. The posterior distribution (16) of the
signal provides a complete statistical characterization of the
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problem. In particular, the MAP and MMSE estimators of
are specified by

(17)

(18)

Finding efficient methods to evaluate (17) and (18) is a common
challenge encountered in statistical signal processing.

IV. MAP ESTIMATION

An estimation based on the minimization of some cost func-
tional is a popular way of obtaining the MAP estimator .
The availability of efficient numerical methods for convex and
nonconvex optimization partially explain the success of such
methods [13], [15]–[17]. The MAP estimator in (17) can be re-
formulated as

(19a)

where

(19b)

(19c)

The term is the data term and the regularization term.
In the AWGN, model the MAP estimation reduces to the pop-

ular regularized least-squares minimization problem

(20)

where is given in (10) and is
the potential function.
The estimator in (20) clearly illustrates the connections

between the standard variational methods and our stochastic
model. In particular, in the framework of the Lévy process, the
Brownian motion yields the classical Tikhonov regularizer. The
Lévy process with Laplace increments provides the -based
TV regularizer. Finally, the Lévy-flight process results in a
log-based regularizer that is linked to the limit case of the
relaxation as tends to zero [12]. Such regularizers have been
shown to be effective in several problems of the recovery of
sparse signals [13], [16]. In [18] the authors have proposed an
efficient method for solving the regularized-least-squares-based
MAP denoising of Lévy processes. We also point out that the
MAP estimation of compound Poisson processes yields a trivial
solution due to a point mass at zero.

V. MMSE ESTIMATION IN AWGN

In this section, we focus on theoretical results related to
MMSE denoising. Consider the AWGN denoising problem

(21)

where each noise component . Then, for any dis-
tribution on , it is possible to characterize theMMSE estimator
as

(22)

where denotes the gradient with respect to and
is the pdf of the noisy vector [19], [20]. The functions and
are the pdfs of the prior and AWGN, respectively. Then, the

MMSE of the estimation problem is given by

(23)

where is the Laplacian with respect to (cf. Appendix II-A).
Although elegant, (22) and (23) are not tractable for arbitrary

distributions on . However, in the special case of Brownian
motion where the increments are Gaussian random variables,
the MMSE estimator reduces to the well-known Wiener filter,
which is commonly referred to as the linear minimum-mean-
squared-error (LMMSE) estimator (cf. Appendix II-B). In the
Karhunen-Loève transform (KLT) domain, the Wiener filter re-
duces to a simple pointwise linear estimator. We finally obtain
the asymptotic description of the MMSE (cf. Appendix II-C and
Appendix II-D) as

(24)

In general, (24) is not equivalent to theMMSE for non-Gaussian
increments. However, it still corresponds to the performance of
the LMMSE estimator.

VI. MESSAGE-PASSING ESTIMATION

A. Exact Formulation

In this section, we specify the MMSE estimator
in (18) for the signals under the Lévy-process model. Unfor-
tunately, due to the high-dimensionality of the integral, this
estimation is intractable in the direct form. We propose to use
the sum-product belief-propagation [9] method to efficiently
approximate the marginalization of the posterior (16), whose
direct computation is intractable otherwise. The BP-based mes-
sage-passing methods have successfully been used in numerous
inference problems in statistical physics, computer vision,
channel coding, and signal processing [9]–[11], [21]–[26].
In order to apply the BP, we construct the bipartite factor-

graph , structured according to the posterior
distribution in (16). We illustrate in Fig. 3 an example of a
factor-graph for . The graph consists of two sets of
nodes, the variable nodes (circles), the factor
nodes (squares), and a set of edges
linking variables to the factors they participate in. To introduce
the BP algorithm, we define the functions and , which
denote the messages exchanged along the edges of the graph.
These messages—often referred to as beliefs—are in fact pdfs
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Fig. 3. Factor-graph representation of the posterior distribution (16) with
. In the graph, square factor nodes represent the probability densities

and circled variable nodes represent the unknowns. The functions and
represent beliefs at the variable node 2.

representing the desirable state of the variable node . We also
define for all and the function

(25)

Whenever the component has a corresponding measurement,
the function is equivalent to the channel pdf. Otherwise, is
equivalent to the constant function.
Given the measurements and the functions and
, the steps of the BP estimation are
1) Initialization: Set

(26a)

(26b)

2) Message Updates: For , compute

(27a)

(27b)

where . As in (16), the symbol denotes
identity after normalization to unity. Since the pdf is
symmetric, the expressions can be rewritten in terms of the
convolutions and .

3) Result: For , compute

(28a)

where the marginal pdf is obtained by

(28b)

The proposed update rules recursively marginalize the poste-
rior distribution, reducing intractable high-dimensional integra-
tion into convolutions. It is well-known that BP gives exact
marginal probabilities for all the nodes in any singly connected
graph. Consequently, for our problem the solution of the algo-
rithm coincides with .

B. Fourier-Domain Alternative

The BP algorithm presented in Section VI-A assumes avail-
ability of a closed-form expression for the pdf . Unfortunately
this form is often unavailable, since the distribution is defined by
its characteristic function obtained by the Lévy-Khintchine
formula (1). When the general shape of the pdf is unknown, a
naïve numerical evaluation of the inverse Fourier-transform of

the characteristic function can lead to unexpected results. As
an example, consider the compound Poisson process. The char-
acteristic function (3) describes the distribution of the incre-
ments, but does not generally admit a closed-form expression
of its inverse Fourier transform. Moreover, it results in a pdf
containing a probability mass (a Dirac delta function) at zero,
which needs to be taken into account explicitly for a correct nu-
merical inversion.
Fortunately, the BP algorithm presented above can readily be

performed in the frequency domain. The message-update equa-
tions are obtained by the convolution property of the Fourier
transform, which amounts to switching the role of multiplica-
tions and convolutions in (27) and (28b). The final estimation
step is also simplified by applying the moment property

(29)

where is the Fourier transform of .
1) Initialization: Set

(30a)

(30b)

where is the Dirac delta function.
2) Message updates: For , compute

(31a)

(31b)

where . The symbol denotes identity
after normalization by the zero frequency component. The
functions represent the Fourier transform of (25).

3) Result: For , compute

(32a)

where the characteristic function of the
marginalized posterior is obtained by

(32b)

Note that (32a) and (32b) can be evaluated with a single integral.
This is achieved by reusing convolutions in (31) and evaluating
the derivative only at zero.

C. Implementation

In principle, the BP equations presented above yield the exact
MMSE estimator for our problem. However, due to the exis-
tence of continuous-time integrals in the updates, they cannot
be implemented in the given form. To obtain a realizable solu-
tion, we need to choose some practical discrete parameteriza-
tion for the messages exchanged in the algorithm. The simplest
and the most generic approach is to sample the functions and
represent them on a uniform grid with finitely many samples.
In our implementation, we fix the support set of the functions
to . We retain only these samples for which
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Fig. 4. AWGN denoising of: (a) Brownian motion. (b) Compound Poisson process. (c) Lévy process with Laplace increments. (d) Lévy-flight process.

. Thus, the total number of samples for representing the
function depends on both the truncation parameter and on
the sampling step . It is given by . The
proper parameter values depend on the distribution to represent
and on the measurements . Then, both time- and frequency-do-
main versions can be obtained by approximating continuous in-
tegrals by standard quadrature rules. In our implementation, we
use Riemann sums to approximate the integrals.

VII. EXPERIMENTAL RESULTS

We now present several experiments with the goal of com-
paring various signal-estimation methods. The performance of
the estimator is judged based on the MSE given by

(33)

where .
We concentrate on the four Lévy processes discussed in

Section II-B and set the parameters of these processes as
• Brownian Motion: The increments are generated from
a standard Gaussian distribution with

.
• Compound Poisson Process: We concentrate on sparse sig-
nals and set the mass probability to
. The size of the jumps follow the standard Gaussian

distribution.
• Laplace Increment Process: The increments are generated
from the Laplace distribution of scale .

• Lévy Flight: We set the distribution of the increments to be
Cauchy with scale parameter .

A. AWGN Denoising

In the first set of experiments, we consider the denoising
of Lévy processes in AWGN. We compare the performance
of several popular estimation methods over a range of noise
levels . We perform 1000 random realization of the denoising
problem for each value of and plot the average MSE in
Figs. 4(a)–4(d). The signal length is set to . The
proposed message-passing estimator is compared with the reg-
ularized least-squares estimators

(34)

where is a finite-difference matrix and is the regular-
ization parameter optimized for the best MSE performance.
The curve labeled LMMSE corresponds to the MSE optimal

linear estimator, which can be obtained by setting the potential
function [27]. The TV method corresponds to the
potential function and can be efficiently imple-
mented by the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) described in [17]. The Log estimator corresponds to the
potential function , where the parameter

controls the sparsity of the signal. Log-based regular-
izers have been shown to outperform traditional -based reg-
ularizers in various applications [13], [16]. In our experiments,
we fix , which corresponds to the MAP estimator for the
Lévy-flight process with Cauchy increments. The Log-based de-
noising was implemented efficiently by the algorithm described
in [18].
It is well known that the LMMSE estimator is optimal for

Brownian motion. In Fig. 4(a), it is precisely matched by
the message-passing MMSE estimator. Moreover, we have
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observed that—even for —the asymptotic prediction
(24) closely matches the simulation results (within 0.06 dB).
Since the curve for the asymptotic prediction is hidden under
LMMSE and MMSE, we have omitted it from Fig. 4(a). The
worst performance is observed for TV regularization, which
yields piecewise-constant solutions by removing small varia-
tions of the signal. The performance of the Log-based method
is significantly better; it preserves important details by allowing
small variations of the signal.
In Fig. 4(b), we observe excellent MSE performance of TV

for compound Poisson processes over many noise levels. This
happens because the piecewise-constant solution of TV esti-
mator is well matched to such signals. In this experiment, we
have also measured the average running times for all the al-
gorithms. For example, for the average estimation
times for LMMSE, TV, Log, and MMSE were 0.03, 0.05, 0.01,
and 0.29 seconds, respectively. The theoretical relevance of the
compound Poisson process is extensively discussed in [8].
In Fig. 4(c), we observe a surprisingly poor performance of

TV, which corresponds to the MAP estimator for Lévy pro-
cesses with Laplace increments. This highlights the fact that,
in some situations, a MAP estimator can result in suboptimal
MSE performance.
We observe that LMMSE performs poorly for the Lévy-flight

process in Fig. 4(d). It fails to preserve signal edges, which re-
sults in a suboptimalMSE performance for all noise levels. Both
TV and Log methods, which are known to be edge-preserving,
yield results close to the MMSE estimator (within 0.2 dB for
Log). For such signals, the Log-based regularizers implement
the MAP estimator.
Themessage-passing algorithm considered in this paper com-

putes the marginals of the posterior distribution. The algorithm
yields theMMSE estimator by finding the mean of the marginal-
ized distribution. But the posterior distribution actually provides
much more information. For example, the algorithm can predict
the MSE of the reconstruction by computing the variance of the
posterior

where is given in (32). The second moment can be
evaluated by using the moment property (29). The capability
to predict the MSE of the reconstruction is useful to comple-
ment the solution of the estimator with a confidence interval.
In Table I, the MSE predicted by the algorithm is presented for
Gaussian and Cauchy increment processes. For comparison, we
also provide the oracle MSE obtained by comparing the true
signal with . The average predicted MSE is obtained from
1000 random realizations of each process. Table I also provides
the standard deviation of the predicted MSE values around the
mean. This illustrates the accuracy of the predicted MSE values
across noise levels.

B. Signal Interpolation

In Fig. 5, we illustrate the interpolation of four types
of Lévy processes from noisy measurements. We assume
AWGN of variance and set the interpolation rate to

. Given 10 noisy measurements, this results in

TABLE I
MMSE PREDICTION

Fig. 5. Tenfold interpolation of Lévy processes from AWGN measurements.
From top to bottom: (a) Brownian motion. (b) Compound Poisson process.
(c) Lévy process with Laplace increments. (d) Lévy flight process. Surprisingly,
for all priors the optimal estimator appears to be a piecewise linear function.

91 estimated values. An interesting observation is that the MSE
optimal interpolator seems to yield piecewise-linear results, in-
dependently of the process considered. In fact, it is known that,
for Brownian motion, piecewise-linear interpolation is optimal
[28]. Note that this does not imply that the estimator is itself
linear, in the sense of being homogeneous and additive—in
general, it is not.
In Table II, we compare the MSE performance of message-

passing estimators with linear estimators for the interpolation
problem with . Each value in the table is obtained
by averaging over 1000 problem instances. For the interpola-
tion problem, the average estimation MSE for the Lévy-flight
process is not defined and can only be characterized conditioned
on a given . Therefore, this process was omitted from the table

C. Estimation From Quantized Samples

We next consider the highly nonlinear problem of estimating
Lévy processes from quantized measurements (14). To do so,
we generate a compound Poisson process of length .
An AWGN of variance 0.1 is added to the signal prior to quan-
tization. The quantizer is uniform with granular region of length

. It is centered at the origin.
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TABLE II
INTERPOLATION OF LéVY PROCESSES: MSE FOR DIFFERENT NOISE LEVELS

Fig. 6. Estimation of the compound Poisson process from quantized measure-
ments. We compare the standard LMMSE against MMSE, thereby illustrating
the suboptimality of standard linear reconstructions.

In Fig. 6, we compare the MSE performance of the message-
passing estimator with the standard LMMSE estimator. The pa-
rameter of the linear estimator was optimized for the bestMSE
performance. In this figure, we plot the mean of the MSE from
1000 problem instances for several quantization levels . For
such nonlinear measurement channels, the message-passing es-
timator yields significant improvements in the reconstruction
performance over the standard linear estimator.

VIII. CONCLUSION

We have presented an in-depth investigation of the Lévy-
process framework for modeling signals with sparse derivatives.
We have also characterized the corresponding statistical esti-
mators. Lévy processes are fundamental members of a recently
proposed family of stochastic processes for the continuous-do-
main modeling of sparse signals. The key contribution of this
paper is a simple message-passing algorithm for the MMSE es-
timation of Lévy processes from noisy measurements. The pro-
posed algorithm can handle a large class of priors, including
those that do not have closed-form pdfs. Moreover, it can incor-
porate a large class of noise distributions, provided that the noise
components are independent among themselves. The algorithm
has also the ability to handle signal-dependent noise. Due to the
tree-like structure of the underlying factor graph, when the mes-
sages are continuous-time functions, the message-passing algo-
rithm obtains the MMSE estimator of the signal. This motivates
its application as a benchmark to judge the optimality of various
existing gradient-based estimators including TV- and Log-reg-
ularization algorithms.

APPENDIX I
LÉVY-ITO DECOMPOSITION

For a Lévy process , let denote the charac-
teristic function of the random variable . Furthermore,
let be the Lévy-Khintchine triplet associated with
the random variable , which has the same distribution as

, for all .
For arbitrary integers , the two representations of the

random variable written as

(35)

show that

(36)

By using the continuity property in the definition of Lévy pro-
cesses, we can further generalize (36) to

(37)

This suggests the Lévy-Khintchine triplet for the
random variable . The triplet can be decomposed as

(38)

where is an absolutely integrable function, is a pure sin-
gular distribution, and . The latter decomposition
is achieved by adapting Lebesgue’s decomposition theorem for
distributions corresponding to measures. In (38), the term BM
reveals the Lévy-Khintchine triplet of a Brownian motion with
non-zero mean. Similarly, since is integrable, the term CP
reflects a compound Poisson process. The last term PJ, due to
the singular nature of , is referred to as the pure-jump compo-
nent. The decomposition (38) is equivalent to decomposing the
process itself in three independent processes as

(39)

which is known as the Lévy-Ito decomposition.

APPENDIX II
MMSE ESTIMATION OF LÉVY PROCESSES

A. Derivation of the MMSE Formula (23)

To prove (23), we start by the definition of MMSE and we
apply the explicit form of to simplify the
equations.
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By introducing (22), we obtain

B. Derivation of the MMSE Denoising Estimator for Brownian
Motion

The samples of Brownian motion can be written as
, where is an -dimensional random vector with distri-

bution . Thus, the distribution of is
. Now, according to (22), we have

(40)

This estimator is the so-called Wiener filter, which gives the
minimumMSE among all linear estimators (LMMSE estimator)
for any Lévy process with increments of variance .

C. KLT of Finite-Variance Lévy Processes

While the increments are stationary, the actual Lévy pro-
cesses are not, which complicates their analysis. The autocor-
relation function in the finite-variance case is

(41)

where is a constant [28]. Thus, if we consider the vector con-
taining samples of a normalized Lévy process with increments
of unit variance, the covariance matrix of would be

(42)

where, for all , the components are
given by

(43)

We are interested in finding the eigenvalues of , where

(44)

Then, by writing the eigenvalue equation of the matrix as

(45)

where , we obtain the recursive set of equations

(46)

The solution of these equations is given by

(47)

for . Finally, by plugging (47) into (46) and per-
forming some algebraic manipulations, we obtain

(48)

for . The entries of the corresponding eigenvectors
are given by

(49)

for .

D. MMSE of Estimation of Brownian Motion

The MMSE estimator for Brownian motion, or, equivalently
the LMMSE estimator for any finite-variance Lévy process, is
also equivalent to the entry-wise MMSE in the KLT domain.
The KLT of is given by

(50)

where and . Notice that,
since and have distributions and ,
respectively, and since is a unitary matrix, and are also
distributed as and .
Now, the MSE of estimating the entry of from the
entry of is (pointwiseWiener filter). Thus,

we have

(51)

When tends to infinity, we get

(52)
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