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Abstract

We consider the estimation of an i.i.d. vector x ∈ Rn from measurements y ∈ Rm
obtained by a general cascade model consisting of a known linear transform fol-
lowed by a probabilistic componentwise (possibly nonlinear) measurement chan-
nel. We present a method, called adaptive generalized approximate message pass-
ing (Adaptive GAMP), that enables joint learning of the statistics of the prior
and measurement channel along with estimation of the unknown vector x. Our
method can be applied to a large class of learning problems including the learn-
ing of sparse priors in compressed sensing or identification of linear-nonlinear
cascade models in dynamical systems and neural spiking processes. We prove
that for large i.i.d. Gaussian transform matrices the asymptotic componentwise
behavior of the adaptive GAMP algorithm is predicted by a simple set of scalar
state evolution equations. This analysis shows that the adaptive GAMP method
can yield asymptotically consistent parameter estimates, which implies that the
algorithm achieves a reconstruction quality equivalent to the oracle algorithm that
knows the correct parameter values. The adaptive GAMP methodology thus pro-
vides a systematic, general and computationally efficient method applicable to a
large range of complex linear-nonlinear models with provable guarantees.

1 Introduction

Consider the estimation of a random vector x ∈ Rn from a measurement vector y ∈ Rm. As
illustrated in Figure 1, the vector x, which is assumed to have i.i.d. components xj ∼ PX , is passed
through a known linear transform that outputs z = Ax ∈ Rm. The components of y ∈ Rm are
generated by a componentwise transfer function PY |Z . This paper addresses the cases where the
distributions PX and PY |Z have some parametric uncertainty that must be learned so as to properly
estimate x.

This joint estimation and learning problem with linear transforms and componentwise nonlinearities
arises in a range of applications, including empirical Bayesian approaches to inverse problems in sig-
nal processing, linear regression and classification [1, 2], and, more recently, Bayesian compressed
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Figure 1: Measurement model considered in this work. The vector x ∈ Rn with an i.i.d. prior
PX(x|λx) passes through the linear transform A ∈ Rm×n followed by a componentwise nonlinear
channel PY |Z(y|z, λz) to result in y ∈ Rm. The prior PX and the nonlinear channel PY |Z depend
on the unknown parameters λx and λz , respectively. We propose adaptive GAMP to jointly estimate
x and (λx, λz) given the measurements y.

sensing for estimation of sparse vectors x from underdetermined measurements [3–5]. Also, since
the parameters in the output transfer function PY |Z can model unknown nonlinearities, this problem
formulation can be applied to the identification of linear-nonlinear cascade models of dynamical
systems, in particular for neural spike responses [6–8].

In recent years, there has been considerable interest in so-called approximate message passing
(AMP) methods for this estimation problem. The AMP techniques use Gaussian and quadratic
approximations of loopy belief propagation (LBP) to provide estimation methods that are computa-
tionally efficient, general and analytically tractable. However, the AMP methods generally require
that the distributions PX and PY |Z are known perfectly. When the parameters λx and λz are un-
known, various extensions have been proposed including combining AMP methods with Expecta-
tion Maximization (EM) estimation [9–12] and hybrid graphical models approaches [13]. In this
work, we present a novel method for joint parameter and vector estimation called adaptive gen-
eralized AMP (adaptive GAMP), that extends the GAMP method of [14]. We present two major
theoretical results related to adaptive GAMP: We first show that, similar to the analysis of the stan-
dard GAMP algorithm, the componentwise asymptotic behavior of adaptive GAMP can be exactly
described by a simple scalar state evolution (SE) equations [14–18]. An important consequence of
this result is a theoretical justification to the EM-GAMP algorithm in [9–12] which is a special
case of adaptive GAMP with a particular choice of adaptation functions. Our second result demon-
strates the asymptotic consistency of adaptive GAMP when adaptation functions correspond to the
maximum-likelihood (ML) parameter estimation. We show that when the ML estimation is com-
puted exactly, the estimated parameters converge to the true values and the performance of adaptive
GAMP asymptotically coincides with the performance of the oracle GAMP algorithms that knows
correct parameter values. Adaptive GAMP thus provides a computationally-efficient method for
solving a wide variety of joint estimation and learning problems with a simple, exact performance
characterization and provable conditions for asymptotic consistency.

All proofs and some technical details that have been omitted for space appear in the full paper [19]
that also provides more background and simulations.

2 Adaptive GAMP

Approximate message passing (AMP) refers to a class of algorithms based on Gaussian approx-
imations of loopy belief propagation (LBP) for the estimation of the vectors x and z according
to the model described in Section 1. These methods originated from CDMA multiuser detection
problems in [15, 20, 21]; more recently, they have attracted considerable attention in compressed
sensing [17, 18, 22]. The Gaussian approximations used in AMP are closely related to standard ex-
pectation propagation techniques [23, 24], but with additional simplifications that exploit the linear
coupling between the variables x and z. The key benefits of AMP methods are their computa-
tional performance, their large domain of application, and, for certain large random A, their exact
asymptotic performance characterizations with testable conditions for optimality [15–18]. This pa-
per considers an adaptive version of the so-called generalized AMP (GAMP) method of [14] that
extends the algorithm in [22] to arbitrary output distributions PY |Z .

The original GAMP algorithm of [14] requires that the distributions PX and PY |Z are known. We
propose an adaptive GAMP, shown in Algorithm 1, to allow for simultaneous estimation of the
distributions PX and PY |Z along with the estimation of x and z. The algorithm assumes that distri-
butions PX and PY |Z have some parametric forms

PX(x|λx), PY |Z(y|z, λz), (1)
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for parameters λx ∈ Λx and λz ∈ Λz and for parameter sets Λx and Λz . Algorithm 1 produces a
sequence of estimates x̂t and ẑt for x and z along with parameter estimates λ̂tx and λ̂tz , The precise
value of these estimates depends on several factors in the algorithm including the termination criteria
and the choice of what we will call estimation functions Gtx, Gtz and Gts, and adaptation functions
Ht
x and Ht

z .

Algorithm 1 Adaptive GAMP

Require: Matrix A, estimation functions Gtx, Gts and Gtz and adaptation functions Ht
x and Ht

z .
1: Initialize t← 0, s−1 ← 0 and some values for x̂0, τ0

x ,
2: repeat
3: {Output node update}
4: τ tp ← ‖A‖2F τ tx/m
5: pt ← Ax̂t − st−1τ tp
6: λ̂tz ← Ht

z(p
t,y, τ tp)

7: ẑti ← Gtz(p
t
i, yi, τ

t
p, λ̂

t
z) for all i = 1, . . . ,m

8: sti ← Gts(p
t
i, yi, τ

t
p, λ̂

t
z) for all i = 1, . . . ,m

9: τ ts ← −(1/m)
∑
i ∂G

t
s(p

t
i, yi, τ

t
p, λ̂

t
z)/∂p

t
i

10:
11: {Input node update}
12: 1/τ tr ← ‖A‖2F τ ts/n
13: rt = xt + τ trA

Tst

14: λ̂tx ← Ht
x(rt, τ tr)

15: x̂t+1
j ← Gtx(rtj , τ

t
r , λ̂

t
x) for all j = 1, . . . , n

16: τ t+1
x ← (τ tr/n)

∑
j ∂G

t
x(rtj , τ

t
r , λ̂

t
x)/∂rj

17: until Terminated

The choice of the estimation and adaptation functions allows for considerable flexibility in the algo-
rithm. For example, it is shown in [14] that Gtx, Gtz , and Gts can be selected such that the GAMP
algorithm implements Gaussian approximations of either max-sum LBP or sum-product LBP that
approximate the maximum-a-posteriori (MAP) or minimum-mean-squared-error (MMSE) estimates
of x given y, respectively. The adaptation functions can also be selected for a number of different
parameter-estimation strategies. Because of space limitation, we present only the estimation func-
tions for the sum-product GAMP algorithm from [14] along with an ML-type adaptation. Some of
the analysis below, however, applies more generally.

As described in [14], the sum-product estimation can be implemented with the functions

Gtx(r, τr, λ̂x) := E[X|R = r, τr, λ̂x], (2a)

Gtz(p, y, τp, λ̂z) := E[Z|P = p, Y = y, τp, λ̂z], (2b)

Gts(p, y, τp, λ̂z) :=
1

τp

(
Gtz(p, y, τp, λ̂z)− p

)
, (2c)

where the expectations are with respect to the scalar random variables

R = X + Vx, Vx ∼ N (0, τr), X ∼ PX(·|λ̂x), (3a)

Z = P + Vz, Vz ∼ N (0, τp), Y ∼ PY |Z(·|Z, λ̂z). (3b)
The estimation functions (2) correspond to scalar estimates of random variables in additive white
Gaussian noise (AWGN). A key result of [14] is that, when the parameters are set to the true values
(i.e. (λ̂x, λ̂z) = (λx, λz)), the outputs x̂t and ẑt can be interpreted as sum products estimates of
the conditional expectations E(x|y) and E(z|y). The algorithm thus reduces the vector-valued
estimation problem to a computationally simple sequence of scalar AWGN estimation problems
along with linear transforms.

The estimation functions Ht
x and Ht

z in Algorithm 1 produce the estimates for the parameters λx
and λz . In the special case when Ht

x and Ht
z produce fixed outputs

Ht
z(p

t,yt, τ tp) = λ
t

z, Ht
x(rt, τ tr) = λ

t

x,
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for pre-computed values of λ
t

z and λ
t

x, the adaptive GAMP algorithm reduces to the standard (non-
adaptive) GAMP algorithm of [14]. The non-adaptive GAMP algorithm can be used when the
parameters λx and λz are known.

When the parameters λx and λz are unknown, it has been proposed in [9–12] that they can be
estimated via an EM method that exploits that fact that GAMP provides estimates of the posterior
distributions of x and z given the current parameter estimates. As described in the full paper [19],
this EM-GAMP method corresponds to a special case of the Adaptive GAMP method for a particular
choice of the adaptation functions Ht

x and Ht
z .

However, in this work, we consider an alternate parameter estimation method based on ML adapta-
tion. The ML adaptation uses the following fact that we will rigorously justify below: For certain
large random A, at any iteration t, the components of the vectors rt and the joint vectors (pt,yt)
will be distributed as

R = αrX + Vx, Vx ∼ N (0, ξr), X ∼ PX(·|λ∗x), (4a)
Z = P + Vz, (Z,P ) ∼ N (0,Kp), Y ∼ PY |Z(·|Z, λ∗z), (4b)

where λ∗x and λ∗z are the “true” parameters and the scalars αr and ξr and the covariance matrix Kp

are some parameters that depend on the estimation and adaptation functions used in the previous
iterations. Remarkably, the distributions of the components of rt and (pt,yt) will follow (4) even
if the estimation functions in the iterations prior to t used the incorrect parameter values. The
adaptive GAMP algorithm can thus attempt to estimate the parameters via a maximum likelihood
(ML) estimation:

Ht
x(rt, τ tr) := arg max

λx∈Λx

max
(αr,ξr)∈Sx(τt

r)

 1

n

n−1∑
j=0

φx(rtj , λx, αr, ξr)

 , (5a)

Ht
z(p

t,y, τ tp) := arg max
λz∈Λz

max
Kp∈Sz(τt

p)

{
1

m

m−1∑
i=0

φz(p
t
i, yi,Kp)

}
, (5b)

where Sx and Sz are sets of possible values for the parameters αr, ξr and Kp, φx and φz are the
log-likelihoods

φx(r, λx, αr, ξr) = log pR(r|λx, αr, ξr), (6a)
φz(p, y, λz,Kp) = log pP,Y (p, y|λz,Kp) (6b)

and pR and pP,Y are the probability density functions corresponding to the distributions in (4).

3 Convergence and Asymptotic Consistency with Gaussian Transforms

3.1 General State Evolution Analysis

Before proving the asymptotic consistency of the adaptive GAMP method with ML adaptation, we
first prove a more general convergence result. Among other consequences, the result will justify
the distribution model (4) assumed by the ML adaptation. Similar to the SE analyses in [14, 18]
we consider the asymptotic behavior of the adaptive GAMP algorithm with large i.i.d. Gaussian
matrices. The assumptions are summarized as follows. Details can be found in the full paper [19,
Assumption 2].

Assumption 1 Consider the adaptive GAMP algorithm running on a sequence of problems indexed
by the dimension n, satisfying the following:

(a) For each n, the matrix A ∈ Rm×n has i.i.d. components with Aij ∼ N (0, 1/m) and the
dimension m = m(n) is a deterministic function of n satisfying n/m→ β for some β > 0
as n→∞.

(b) The input vectors x and initial condition x̂0 are deterministic sequences whose components
converge empirically with bounded moments of order s = 2k − 2 as

lim
n→∞

(x, x̂0)
PL(s)

= (X, X̂0), (7)
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to some random vector (X, X̂0) for k = 2. See [19] for a precise statement of this type of
convergence.

(c) The output vectors z and y ∈ Rm are generated by

z = Ax, y = h(z,w), (8)

for some scalar function h(z, w) where the disturbance vector w is deterministic, but em-
pirically converges as

lim
n→∞

w
PL(s)

= W, (9)

with s = 2k−2, k = 2 andW is some random variable. We let PY |Z denote the conditional
distribution of the random variable Y = h(Z,W ).

(d) Suitable continuity assumptions on the estimation functionsGtx,Gtz andGts and adaptation
functions Ht

x and Ht
z – see [19] for details.

Now define the sets of vectors

θtx := {(xj , rtj , x̂t+1
j ), j = 1, . . . , n}, θtz := {(zi, ẑti , yi, pti), i = 1, . . . ,m}. (10)

The first vector set, θtx, represents the components of the the “true,” but unknown, input vector x, its
adaptive GAMP estimate x̂t as well as rt. The second vector, θtz , contains the components of the
“true,” but unknown, output vector z, its GAMP estimate ẑt, as well as pt and the observed input y.

The sets θtx and θtz are implicitly functions of the dimension n. Our main result, Theorem 1 below,
characterizes the asymptotic joint distribution of the components of these two sets as n → ∞.
Specifically, we will show that the empirical distribution of the components of θtx and θtz converge
to a random vectors of the form

θ
t

x := (X,Rt, X̂t+1), θ
t

z := (Z, Ẑt, Y, P t), (11)

where X is the random variable in the initial condition (7). Rt and X̂t+1 are given by

Rt = αtrX + V t, V t ∼ N (0, ξtr), X̂t+1 = Gtx(Rt, τ tr, λ
t

x) (12)

for some deterministic constants αtr, ξ
t
r, τ

t
r and λ

t

x that will be defined momentarily. Similarly,
(Z,P t) ∼ N (0,Kt

p), and

Y ∼ PY |Z(·|Z), Ẑt = Gtz(P
t, Y, τ tp, λ

t

z), (13)

whereW is the random variable in (9) and Kt
p and λ

t

z are also deterministic constants. The determin-
istic constants above can be computed iteratively with the following state evolution (SE) equations
shown in Algorithm 2.

Theorem 1 Consider the random vectors θtx and θtz generated by the outputs of GAMP under As-
sumption 1. Let θ

t

x and θ
t

z be the random vectors in (11) with the parameters determined by the SE
equations in Algorithm 2. Then, for any fixed t, almost surely, the components of θtx and θtz converge
empirically with bounded moments of order k = 2 as

lim
n→∞

θtx
PL(k)

= θ
t

x, lim
n→∞

θtz
PL(k)

= θ
t

z. (17)

where θ
t

x and θ
t

z are given in (11). In addition, for any t, the limits

lim
n
λtx = λ

t

x, lim
n
λtz = λ

t

z, lim
n
τ tr = τ tr, lim

n
τ tp = τ tp, (18)

also hold almost surely.

Similar to several other analyses of AMP algorithms such as [14–18], the theorem provides a scalar
equivalent model for the componentwise behavior of the adaptive GAMP method. That is, asymp-
totically the components of the sets θtx and θtz in (10) are distributed identically to simple scalar
random variables. The parameters in these random variables can be computed via the SE equations
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Algorithm 2 Adaptive GAMP State Evolution
Given the distributions in Assumption 1, compute the sequence of parameters as follows:

• Initialization: Set t = 0 with

K0
x = cov(X, X̂0), τ0

x = τ0
x , (14)

where the expectation is over the random variables (X, X̂0) in Assumption 1(b) and τ0
x is

the initial value in the GAMP algorithm.

• Output node update: Compute the variables associated with θ
t

z:

τ tp = βτ tx, Kt
p = βKt

x, λ
t

z = Ht
z(P

t, τ tp), (15a)

τ tr = −E−1

[
∂

∂p
Gts(P

t, Y, τ tp, λ
t

z)

]
, ξtr = (τ tr)

2E
[
Gts(P

t, Y, τ tp, λ
t

z)
]
, (15b)

αtr = τ trE
[
∂

∂z
Gts(P̂ , h(z,W ), τ tp, λ

t

z)

∣∣∣∣
z=Z

]
. (15c)

where the expectations are over the random variables (P t, Y,W ).

• Input node update: Compute the variables associated with θ
t

x:

λ
t

x = Ht
x(Rt, τ tr), (16a)

τ t+1
x = τ trE

[
∂

∂r
Gtx(Rt, τ tr, λ

t

x)

]
, Kt+1

x = cov(X, X̂t+1), (16b)

where the expectation is over the random variable (X, X̂t+1).

(14), (15) and (16), which can be evaluated with one or two-dimensional integrals. From this scalar
equivalent model, one can compute a large class of componentwise performance metrics such as
mean-squared error (MSE) or detection error rates. Thus, the SE analysis shows that for, essentially
arbitrary estimation and adaptation functions, and distributions on the true input and disturbance, we
can exactly evaluate the asymptotic behavior of the adaptive GAMP algorithm. In addition, when
the parameter values λx and λz are fixed, the SE equations in Algorithm 2 reduce to SE equations
for the standard (non-adaptive) GAMP algorithm described in [14].

3.2 Asymptotic Consistency with ML Adaptation

The general result, Theorem 1, can be applied to the adaptive GAMP algorithm with arbitrary es-
timation and adaptation function. In particular, the result can be used to rigorously justify the SE
analysis of the EM-GAMP presented in [11, 12]. Here, we use the result to prove the asymptotic
parameter consistency of Adaptive GAMP with ML adaptation. The key point is to realize that
the distributions (12) and (13) exactly match the distributions (4) assumed by the ML adaptation
functions (5). Thus, the ML adaptation should work provided that the maximizations in (5) yield
the correct parameter estimates. This condition is essentially an identifiability requirement that we
make precise with the following definitions.

Definition 1 Consider a family of distributions, {PX(x|λx), λx ∈ Λx}, a set Sx of parameters
(αr, ξr) of a Gaussian channel and function φx(r, λx, αr, ξr). We say that PX(x|λx) is identifiable
with Gaussian outputs with parameter set Sx and function φx if:

(a) The sets Sx and Λx are compact.

(b) For any “true” parameters λ∗x ∈ Λx, and (αr, ξr) ∈ Sx, the maximization

λ̂x = arg max
λx∈Λx

max
(αr,ξr)∈Sx

E [φx(α∗rX + V, λx, αr, ξr)|λ∗x, α∗r , ξ∗r ] , (19)

is well-defined, unique and returns the true value, λ̂x = λ∗x. The expectation in (19) is with
respect to X ∼ PX(·|λ∗x) and V ∼ N (0, ξ∗r ).
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(c) Suitable continuity assumptions – see [19] for details.

Definition 2 Consider a family of conditional distributions, {PY |Z(y|z, λz), λz ∈ Λz} generated
by the mapping Y = h(Z,W, λz) where W ∼ PW is some random variable and h(z, w, λz) is
a scalar function. Let Sz be a set of covariance matrices Kp and let φz(y, p, λz,Kp) be some
function. We say that conditional distribution family PY |Z(·|·, λz) is identifiable with Gaussian
inputs with covariance set Sz and function φz if:

(a) The parameter sets Sz and Λz are compact.

(b) For any “true” parameter λ∗z ∈ Λz and true covariance K∗p, the maximization

λ̂z = arg max
λz∈Λz

max
Kp∈Sz

E
[
φz(Y, P, λz,Kp)|λ∗z,K∗p

]
, (20)

is well-defined, unique and returns the true value, λ̂z = λ∗z , The expectation in (20) is with
respect to Y |Z ∼ PY |Z(y|z, λ∗z) and (Z,P ) ∼ N (0,K∗p).

(c) Suitable continuity assumptions – see [19] for details.

Definitions 1 and 2 essentially require that the parameters λx and λz can be identified through a
maximization. The functions φx and φz can be the log likelihood functions (6a) and (6b), although
we permit other functions as well. See [19] for further discussion of the likelihood functions as well
as the choice of the parameter sets Sx and Sz .

Theorem 2 Let PX(·|λx) and PY |Z(·|·, λz) be families of input and output distributions that are
identifiable in the sense of Definitions 1 and 2. Consider the outputs of the adaptive GAMP algo-
rithm using the ML adaptation functions (5) using the functions φx and φz and parameter sets in
Definitions 1 and 2. In addition, suppose Assumption 1(a) to (c) hold where the distribution of X is
given by PX(·|λ∗x) for some “true” parameter λ∗x ∈ Λx and the conditional distribution of Y given
Z is given by PY |Z(y|z, λ∗z) for some “true” parameter λ∗z ∈ Λz . Then, under suitable continuity
conditions (see [19] for details), for any fixed t,

(a) The components of θtx and θtz in (10) converge empirically with bounded moments of order
k = 2 as in (17) and the limits (18) hold almost surely.

(b) If (αtr, ξ
t
r) ∈ Sx(τ tr) for some t, then limn→∞ λ̂tx = λ

t

x = λ∗x almost surely.

(c) If Kt
p ∈ Sz(τ tp) for some t, then limn→∞ λ̂tz = λ

t

z = λ∗z almost surely.

The theorem shows, remarkably, that for a very large class of the parameterized distributions, the
adaptive GAMP algorithm with ML adaptation is able to asymptotically estimate the correct param-
eters. Also, once the consistency limits in (b) and (c) hold, the SE equations in Algorithm 2 reduce
to the SE equations for the non-adaptive GAMP method running with the true parameters. Thus,
we conclude there is asymptotically no performance loss between the adaptive GAMP algorithm
and a corresponding oracle GAMP algorithm that knows the correct parameters in the sense that the
empirical distributions of the algorithm outputs are described by the same SE equations.

4 Numerical Example: Estimation of a Gauss-Bernoulli input

Recent results suggest that there is considerable value in learning of priors PX in the context of
compressed sensing [25], which considers the estimation of sparse vectors x from underdetermined
measurements (m < n) . It is known that estimators such as LASSO offer certain optimal min-max
performance over a large class of sparse distributions [26]. However, for many particular distribu-
tions, there is a potentially large performance gap between LASSO and MMSE estimator with the
correct prior. This gap was the main motivation for [9, 10] which showed large gains of the EM-
GAMP method due to its ability to learn the prior. Here, we present a simple simulation to illustrate
the performance gain of adaptive GAMP and its asymptotic consistency. Specifically, Fig. 2 com-
pares the performance of adaptive GAMP for estimation of a sparse Gauss-Bernoulli signal x ∈ Rn
from m noisy measurements

y = Ax + w,

7



(a) (b)
Noise variance (    )Measurement ratio (       )

M
S

E
 (d

B
)

M
S

E
 (d

B
)

0.5 1 1.5 2
14

13

12

11

10

9

8

7

Measurement ratio (m/n)

M
SE

 (d
B)

 

 
State Evolution
LASSO
Oracle GAMP
Adaptive GAMP

10 3 10 2 10 135

30

25

20

15

10

Noise Variance ( 2)

M
SE

 (d
B)

 

 

Figure 2: Reconstruction of a Gauss-Bernoulli signal from noisy measurements. The average recon-
struction MSE is plotted against (a) measurement ratio m/n and (b) AWGN variance σ2. The plots
illustrate that adaptive GAMP yields considerable improvement over `1-based LASSO estimator.
Moreover, it exactly matches the performance of oracle GAMP that knows the prior parameters.

where the additive noise w is random with i.i.d. entries wi ∼ N (0, σ2). The signal of length
n = 400 has 20% nonzero components drawn from the Gaussian distribution of variance 5. Adap-
tive GAMP uses EM iterations, which are used to approximate ML parameter estimation, to jointly
recover the unknown signal x and the true parameters λx = (ρ = 0.2, σ2

x = 5). The performance of
adaptive GAMP is compared to that of LASSO with MSE optimal regularization parameter, and or-
acle GAMP that knows the parameters of the prior exactly. For generating the graphs, we performed
1000 random trials by forming the measurement matrix A from i.i.d. zero-mean Gaussian random
variables of variance 1/m. In Figure 2(a), we keep the variance of the noise fixed to σ2 = 0.1 and
plot the average MSE of the reconstruction against the measurement ratio m/n. In Figure 2(b), we
keep the measurement ratio fixed to m/n = 0.75 and plot the average MSE of the reconstruction
against the noise variance σ2. For completeness, we also provide the asymptotic MSE values com-
puted via SE recursion. The results illustrate that GAMP significantly outperforms LASSO over the
whole range of m/n and σ2. Moreover, the results corroborate the consistency of adaptive GAMP
which achieves nearly identical quality of reconstruction with oracle GAMP. The performance re-
sults here and in [19] indicate that adaptive GAMP can be an effective method for estimation when
the parameters of the problem are difficult to characterize and must be estimated from data.

5 Conclusions and Future Work

We have presented an adaptive GAMP method for the estimation of i.i.d. vectors x observed through
a known linear transforms followed by an arbitrary, componentwise random transform. The proce-
dure, which is a generalization of EM-GAMP methodology of [9, 10], estimates both the vector x
as well as parameters in the source and componentwise output transform. In the case of large i.i.d.
Gaussian transforms with ML parameter estimation, it is shown that the adaptive GAMP method is
provably asymptotically consistent in that the parameter estimates converge to the true values. This
convergence result holds over a large class of models with essentially arbitrarily complex parame-
terizations. Moreover, the algorithm is computationally efficient since it reduces the vector-valued
estimation problem to a sequence of scalar estimation problems in Gaussian noise. We believe that
this method is applicable to a large class of linear-nonlinear models with provable guarantees and
that it can have applications in a wide range of problems. We have mentioned the use of the method
for learning sparse priors in compressed sensing. Future work will include possible extensions to
non-Gaussian matrices.
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