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Optical tomography has been widely investigated for biomedical imaging applications. In recent years optical tomog-
raphy has been combined with digital holography and has been employed to produce high-quality images of phase
objects such as cells. In this paper we describe a method for imaging 3D phase objects in a tomographic configuration
implemented by training an artificial neural network to reproduce the complex amplitude of the experimentally mea-
sured scattered light. The network is designed such that the voxel values of the refractive index of the 3D object are the
variables that are adapted during the training process. We demonstrate the method experimentally by forming images
of the 3D refractive index distribution of Hela cells. © 2015 Optical Society of America

OCIS codes: (180.1655) Coherence tomography; (180.3170) Interference microscopy; (180.6900) Three-dimensional microscopy;

(100.3010) Image reconstruction techniques.
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1. INTRODUCTION

The learning approach to imaging we describe in this paper is
related to adaptive techniques in phased antenna arrays [1], iter-
ative imaging schemes [2,3], and inverse scattering [4,5]. In the
optical domain an iterative approach was demonstrated by the
Sentenac group [6,7], who used the coupled dipole approxima-
tion [8] for modeling light propagation in inhomogeneous media
(a very accurate method but computationally intensive) to sim-
ulate light scattering from small objects (1 μm × 0.5 μm) in a
point scanning microscope configuration. Maleki and Devaney
in 1993 [9] demonstrated diffraction tomography using intensity
measurements and iterative phase retrieval [10]. Very recently an
iterative optimization method was demonstrated [11] for imaging
3D objects using incoherent illumination and intensity detection.
There are similarities but also complementary differences between
our method and [11]. Our method uses coherent light and relies
on digital holography [12,13] to record the complex amplitude
of the field, whereas direct intensity detection is used in [11].
Both use the beam propagation method (BPM) [14,15] to model
the scattering process and the error backpropagation method
[16] to train the system. At the end of the training process the
network discovers a 3D index distribution that is consistent with
the experimental observations. We experimentally demonstrate
the technique by imaging polystyrene beads and HeLa and
hTERT-RPE1 cells.

The holographic recording employed in the method presented
in this paper is advantageous for imaging phase objects such as the
cells in the experiments. Moreover we included in this optimiza-
tion algorithm sparsity constraints that significantly improve the
quality of the reconstructions. We also compared our method

with other coherent tomographic reconstruction techniques.
The learning approach improved the quality of the images pro-
duced by all the direct (noniterative) tomographic reconstruction
methods we tried.

2. EXPERIMENTAL SETUP

A schematic diagram of the experimental setup is shown in Fig. 1.
It is a holographic tomography system [17], in which the sample
is illuminated with multiple angles and the scattered light is
holographically recorded. Several variation of the holographic
tomography system have been demonstrated before [18–21].
The optical arrangement we used is most similar to the one de-
scribed by Choi et al. [18]. The first beam splitter divides the laser
beam in the reference and signal arms. In the signal arm a rotating
mirror varies the angle of illumination of the sample using the 4F
system created by L1 and OB1. The sample is imaged onto the
CMOS camera using the 4F system created by OB2 and L2. The
reference beam is combined with the signal beam via the beam
splitter (BS2) to form a hologram. Phase stability is maintained by
using a differential measurement between the phase on a portion
of the field of view on the detector that does not include the cell
and the cell itself. In this way the system is insensitive to drifts in
the relative phase between the reference and signal beams. The
NAs are 1.45 and 1.4 for the illumination and imaging portions
of the system (OB1 and OB2), respectively.

The samples to be measured were prepared by placing
polystyrene beads and cells between two glass cover slides. The
samples were illuminated with a continuous collimated wave at
561 nm at 80 different angles. The amplitude and phase of
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the light transmitted through the sample were imaged onto a 2D
detector, where they were holographically recorded by introduc-
ing a reference beam. The recordings constitute the training
set with which we train the computational model that simulates
the experimental setup. We construct the network using the
BPM. The inhomogeneous medium (beads or cells) is divided
into thin slices along the propagation direction (z). The propa-
gation through each slice is calculated as a phase modulation due
to the local transverse index variation followed by propagation in a
thin slice of a homogenous medium having the average value of
the index of refraction of the sample.

The transverse (x–y) resolution is limited by the numerical
aperture of the imaging system composed of lenses OBJ2 and
L2 in Fig. 1. This limit can in principle be exceeded because
the illumination is not a single plane wave. This idea was explored
for conventional tomography in [22], and it could also be used
in conjunction with the learning approach we describe in this pa-
per. The longitudinal (z) resolution is limited by the numerical
aperture of the illuminating beam [23].

3. METHODOLOGY

A schematic description of the BPM simulation is shown in
Fig. 2. The straight lines connecting any two circles represent
multiplication of the output of the unit located in the l th layer
of the network at x � n1δ, y � m1δ by the discretized Fresnel
diffraction kernel ejπ��n

2
l −n

2
l�1

�δ2��m2
l −m

2
l�1

�δ2 �∕λδz where nl and ml
are integers and λ is the wavelength of light. δ is the sampling

interval in the transverse coordinates �x; y�, whereas δz is the sam-
pling interval along the propagation direction z. The circles in the
diagram of Fig. 2 perform a summation of the complex amplitude
of the signals converging to each circle and also multiplication of
this sum by ej�2πΔnδz z�∕λ. Δn�x; y; z� is the unknown 3D index
perturbation of the object.

In the experiments the network has 420 layers with Δn�x; y; z�
being the adaptable variable. In contrast with a conventional
neural network, the output of the layered structure in Fig. 2 is
a linear function of the input complex field amplitude.
However, the dependence of the output is nonlinearly related
to Δn�x; y; z�. The BPM can be trained using steepest descent
exactly as the backpropagation algorithm in neural networks
[24–26]. Specifically, the learning algorithm carries out the fol-
lowing minimization:

min
Δn̂

�
1

2K

XK
k�1

‖Ek�Δn̂� −Mk�Δn�‖2 � τS�Δn̂�
�

subject to 0 ≤ Δn̂:

In the above expression Ek�Δn̂� is the current prediction of the
BPM network for the output when the system is illuminated with
the kth beam, and Mk�Δn� is the actual measurement obtained
by the optical system. Δn̂ indicates the estimate for the index per-
turbation due to the object. The term S�Δn̂� is a sparsity con-
straint [27–29] to enhance the contrast, while τ is a parameter
that can be tuned to maximize image quality by systematic search.
We assessed the significance of the sparsity constraint by running
the learning algorithm with and without this constraint. An ex-
ample of the results is shown in Fig. S4 in Supplement 1. The
positivity constraint takes advantage of the assumption that the
index perturbation is real and positive. The optimization is carried
out iteratively by taking the derivative of the error with respect to
each of the adaptable parameters following steepest descent:

Δn̂ ← Δn̂ −
�
α

K

XK
k�1

ϵk
∂ϵk
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� τ
∂S�Δn̂�
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�
;

where ϵk � ‖Ek�Δn̂� −Mk�Δn�‖ is the error, α is a constant,
and the change in Δn̂ is proportional to the error and its deriva-
tive. This is achieved efficiently via a recursive computation of
the gradient, which is the backpropagation part of our learning
algorithm. The data acquisition speed of this method is the same
as in any other optical tomography method. It is determined by
the product of the number of illumination angles and the time
required to capture each hologram. The processing time to run
the learning algorithm (100 iterations) after the data are recorded
is more than an hour on a standard laptop computer, but it can be
improved dramatically with custom signal processing circuits.

4. RESULTS

We first tested the system with polystyrene beads encapsulated
between two glass slides in immersion oil. The sample was in-
serted in the optical system of Fig. 1, and 80 holograms were re-
corded by illuminating the sample at 80 distinct angles uniformly
distributed in the range of −45° to �45°. The collected data
make up the training set for the 420-layer BPM network, which
simulates a physical propagation distance of 30 μm and a trans-
verse window of 37 μm × 37 μm (δx � δy � 72 nm). The net-
work was initialized with the standard filtered backprojection
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L1
OB1 OB2

L2
BS2
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CMOS

Sample

L3
L4

Fig. 1. Experimental setup (BS, beam splitter; GM, galva mirror; L,
lens; OB, objective; M, mirror).

Fig. 2. Schematic diagram of object reconstruction by learning the 3D
index distribution that minimizes the error ϵ, defined at the mean
squared difference between the experimental measurement and the pre-
diction of a computational model based on the BPM.
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reconstruction algorithm (Radon transform) [30], and the result-
ing 3D images before and after 100 iterations are shown in Fig. 3.
The final image produced by the learning algorithm is an accurate
reproduction of the bead shape.

The power of the learning tomography method presented in
this paper is that the reconstruction of the refractive index is not
based on the Born approximation. The BPM does not account for
reflections, but it allows multiple forward scattering events. In the

(a) (b) (c)

(d) (e) (f)

10µm

Fig. 3. Experimental reconstruction of two 10 μm beads of refractive index 1.588 at λ � 561 nm in immersion oil with n0 � 1.516. (a)–(c) x–y, y–z,
and x–z slices using the inverse Radon transform reconstruction. (d)–(f) Same slices for our learning-based reconstruction method. (The lines indicate the
locations of the slices.)

(a)

(b) (c) (d)

(e) (f) (g)

(h) (j) (i)

Fig. 4. Simulation geometry comprising two spherical beads with a refractive index difference of 0.04 compared to the background. (b)–(j) Cross-
sectional views on x–y, x–z, and y–z planes of (b)–(d) original refractive index, (e)–(g) reconstruction with optical diffraction tomography, and (h)–
(j) reconstruction with learning tomography. Because of the scattering, since the Born approximation (single scattering) is not valid, the diffraction
tomography fails to reconstruct the refractive index inhomogeneity. However, the learning tomography is capable of correctly reconstructing the object.
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case of multiple inhomogeneities, the Born approximation is not
valid anymore and the reconstruction based on conventional to-
mographic techniques becomes inaccurate. In order to demon-
strate this effect, we simulate a refractive index inhomogeneity
(Δn � 0.04, D � 5 μm) that comprises two spherical beads
on the optical axis at two different z planes. Considering the
center of the computational window to be the center of the

x–y plane, the centers of the beads are placed at x1 � 0 μm,
y1 � 0 μm, z1 � 6 μm and x2 � 0 μm, y2 � 5 μm, z2 �
12 μm at a distance of 6 μm away from each other. Figure 4
shows the results of the two different reconstruction schemes.
Based on our previous explanation, since the Born approximation
is not valid to describe the physical behavior of light propagation
through this sample, the optical diffraction tomography method

(b) (f)

(c) (g)

(d)

10 Iterations 10 Iterations

1 Iteration1 Iteration

100 Iterations

x-y

y-z

x-z

(h)

100 Iterations

y-z

x-zx-y

(a) (e)

Fig. 5. Comparison of the proposed method initialized with the inverse Radon transform (left) versus initialization with a constant value (Δn̂ � 0.007)
(right). (a) and (e) plot the error fall-off for 80 illumination angles initialized with the inverse Radon and constant values, respectively. The horizontal dotted
line shows the inverse Radon performance for comparison. (b)–(d), x–y, y–z, and x–z stacks for, respectively, the first, tenth, and hundredth iterations
of the proposed method initialized by inverse Radon. (d)–(f) Same figures for the proposed method initialized by constant value. (See also Media 1.)
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is not capable of reconstructing the object. Contrary to that, the
learning tomography method presented in this paper is capable of
dealing with multiple scattering and therefore correctly recon-
structs the object.

A sample of a HeLa cell was also prepared, and the same pro-
cedure was followed to obtain a 3D image. The results are shown
in Fig. 5, where the error function is plotted as a function of iter-
ation number. In this instance, the system was initialized with a
constant but nonzero value (Δn̂ � 0.007). Also shown in Fig. 5
are the results obtained when the system was initialized with the
Radon reconstruction from the same data. After 100 iterations
both runs yield essentially identical results. Notice that the error
in the final image (after 100 iterations) is significantly lower than
the error of the Radon reconstruction. This is also evident by vis-
ual inspection of the images in Fig. 5, where the artifacts due to
the missing cone [23] and diffraction [18] are removed by the
learning process.

We use the result of tomographic reconstructions to initialize
the learning algorithm. The results are included in Fig. 6, showing
that diffraction tomography [31] and iterative Radon [18] give
smaller initial error than simple Radon reconstructions but the
learning algorithm in all cases reduces the error further and im-
proves the quality of the reconstructed image. The four runs cor-
responding to the four different initial conditions converge to the
same final reconstruction. The images corresponding to the three
tomographic reconstructions used as initial conditions are pre-
sented in Supplement 1. Results from an experimentwith a reduced
range of illumination angles are also presented in Supplement 1.

As discussed earlier optical 3D imaging techniques rely on the
assumption that the object being imaged does not significantly
distort the illuminating beam. This is assumed, for example,
in Radon or diffraction tomography. In other words, these 3D
reconstruction methods rely on the assumption that the measured
scattered light consists of photons that have only been scattered

once before they reach the detector. The BPM, on the other hand,
allows for multiple forward scattering events. The only simplifi-
cation is that reflections are not taken into account; these could
eventually be incorporated into the network equation without
fundamentally altering the approach described in this paper.
Since biological tissue is generally forward scattering, the BPM
can be a good candidate to model propagation of thick biological
samples, and this may be the most significant advantage of the
learning approach. To demonstrate this point, we prepared
two glass slides with a random distribution of hTERT-RPE1 cells
(immortalized epithelial cells from retina) on each slide. When we
attach the two slides together, we can find locations where two

Fig. 6. Error between the experimental measurements and the predic-
tions of the computational mode plotted as a function of the number of
iterations for four different initial conditions: constant index (black),
Radon tomographic reconstruction (red), diffraction tomography [31]
(green), and the iterative method described in [18] (blue).

(a)
10 µm

(b)

(c)

(d)
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Fig. 7. Images of two hTERT-RPE1 cells. x–y slices corresponding to
different depths of, respectively, �9, �6, �3, 0, and −3 μm (positive
being toward the detector) from the focal plane of the lens OB2 in Fig. 1
for (a)–(e) inverse Radon-transform-based reconstruction and (f)–(j) same
slices for our learning-based reconstruction method.
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cells are aligned in z, one on top of the other. Figures 7(a)–7(e)
show the images of such a stack of two cells produced with a direct
inversion using the Radon transform. Figures 7(f)–7(j) show the
same object imaged with the proposed learning algorithm. The
learning method was able to distinguish the two cells where
the Radon reconstruction merged the two into a single pattern
due to the blurring in z, which is a consequence of the missing
cone. We believe the origin of the ringing artifacts in the Radon
image is due to the multiple scattering of light from one cell to
another (as explained earlier).

5. DISCUSSION AND CONCLUSIONS

In conclusion, we have demonstrated a neural-network-based
algorithm to solve the optical phase tomography problem and
have applied it to biological (HeLa and hTERT-RPE1 cells)
and synthetic (polystyrene beads) samples. The experimental
measurements were performed with a conventional collimated
illumination phase tomography setup, with coherent light and
holograms recorded off-axis. The sample scattering potential
was modeled as a neural network implementing a forward BPM.
The network is organized in layers of neurons, each one of them
representing an x–y plane in the BPM. The output of the network
is compared to the experimental measurements, and the error is
used to correct the weights (representing the refractive index con-
trast) in the neurons using standard error backpropagation tech-
niques. The algorithm yields images of better quality than other
tomographic reconstruction methods. In particular, the missing
cone artifact is efficiently removed, as well as parasitic granular
structures. We have shown that whether starting from a constant
initial guess for the refractive index or with a conventional Radon
tomographic image, the method essentially converges to the same
result after 100 iterations. This approach opens rich perspectives
for active correction of scattering in biological samples; in particu-
lar, it has the potential of increasing the resolution and the con-
trast in fluorescent and two-photon imaging.
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