PROBING INTRACELLULAR ELASTICITY WITH MINIMAL-HESSIAN REGISTRATION

Yekta Kesenci1,*, Aleix Boquet-Pujadas2,*, Michael Unser2, Jean-Christophe Olivo-Marin1

1 Institut Pasteur, Université Paris Cité, CNRS UMR 3691, BioImage Analysis Unit, F-75015 Paris, France.
2 Biomedical Imaging Group, École polytechnique fédérale Lausanne (EPFL), Lausanne, Switzerland.

ABSTRACT

We propose an image-based elastography method to measure the heterogeneous stiffness inside a cell and its nucleus. It uses a widely accessible setup consisting of plate compression imaged with fluorescence microscopy. Our framework recovers a spatial map of Young’s modulus from images of the intracellular displacements. These displacements are measured with a novel optical-flow technique characterised by a Hessian-Schatten norm regularizer. The aim is to favor piecewise-linear displacements because they reproduce solutions to linear elasticity problems well when the underlying modulus is piecewise-constant, as is often the case in cells. Our computational approach is fast enough for long time-lapse acquisitions and 3D imaging. It is able to cope with two common pitfalls of biological elastography: high compressibility and small compressions to avoid damage. We show our method is faster and more accurate than the state-of-the-art.

Index Terms— Nuclear mechanics, elastography, optical flow, nuclear norm

1. INTRODUCTION

The stiffness of the cell nucleus is an important marker for diseases as diverse as Emery-Dreifuss muscular dystrophy, Hutchinson-Gilford progeria syndrome, or cancer [1]. To measure stiffness, biologists perform a simple tensile test [2], [3]. They apply a known force on the nuclear surface, for example with an atomic-force microscope, and measure how much the length or perimeter of the nucleus changes. A single figure of merit—a constant Young’s modulus E—is then derived from the shape measurement using analytical versions of Hooke’s law in some characteristic dimension [4]. While the experimental setup and the measurements themselves are convenient, these methods oversimplify elasticity problems well when the underlying modulus is piecewise-constant, as is often the case in cells. Our computational approach is fast enough for long time-lapse acquisitions and 3D imaging. It is able to cope with two common pitfalls of biological elastography: high compressibility and small compressions to avoid damage. We show our method is faster and more accurate than the state-of-the-art.

Optical flow has been used to compute tissue strain in multiple medical imaging applications [10]. The most popular among such OF methods is based on vectorial total variation (TV-L_1) [11]. However OF by itself is not accurate...
enough to estimate the fine lateral displacements required to reconstruct sensitive stiffness maps under small compressions. To overcome this limitation, most elastography methods preprocess the displacement field “before inverting” for Young’s modulus, for example by assuming incompressibility of the tissue [12]. Unfortunately, these approaches are not applicable in biology because cells and their nuclei are highly compressible. Instead of preprocessing, other methods resort to complex optimization schemes to stabilise the elasticity map [13], but their computational complexity is unfit for the long acquisitions required to study cell migration [14] and do not scale well to 3D.

We argue that the regularisation term of OF must be chosen carefully. In particular, the piecewise constant displacements enforced by the traditional choice of vectorial total variation (TV-1) method introduce errors in the derivatives when the strain is computed. These errors are then amplified when computing Young’s modulus from the strain. To mitigate these effects in a way that is both fast and compatible with biological experiments, we propose to regularise OF with a second-order term based on the Hessian Schatten-norm (HSN-OF) enforced piecewise-linear displacements.

2. METHOD

2.1. Mechanical Model of the Cell

We consider the cell and the nucleus as continuous media in a compact domain Ω. We consider that the applied forces are small, which is compatible with the protection of the cellular integrity. Further we assume that these forces are applied slowly enough to avoid triggering the viscous properties of the cell. Under these conditions, the cell and the nucleus can be represented as a linearly isotropic elastic material that obeys to:

\[
\begin{align*}
\nabla \cdot \zeta &= 0, & \text{in } \Omega \\
\varepsilon(u) &= \lambda \text{Tr}(\varepsilon(u))\mathbb{I} + 2\mu \varepsilon(u), & \text{in } \Omega \\
\varepsilon(u) &= \frac{1}{2} (\nabla u + \nabla u^T), & \text{in } \Omega \\
u &= g, & \text{on } \Gamma_g \\
\zeta \cdot n &= T, & \text{on } \Gamma_T,
\end{align*}
\]

where \(\zeta : \Omega \rightarrow \mathbb{R}^2 \times \mathbb{R}^2\) and \(\varepsilon : \Omega \rightarrow \mathbb{R}^2 \times \mathbb{R}^2\) are the second-order stress and strain tensors, \(u\) the displacement field, \(\lambda\) and \(\mu\) the Lamé parameters, \(g\) and \(T\) the displacements and applied tractions on the boundary, and \(n\) the vector that is normal to the boundary \(\partial \Omega = \Gamma_g \cup \Gamma_T\) of the domain [4]. The Lamé parameters are expressed using Young’s modulus \(E\) and Poisson’s ratio \(\nu\) through the relations \(\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}\) and \(\mu = \frac{E}{2(1+\nu)}\). We consider \(E(r), r \in \Omega\), to vary across the domain.

2.2. Estimation of Displacements from Images

Denoting by \(I : \Omega_I \times \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}\) the intensity function of the images, OF methods estimate a displacement field \(u_{OF}\) by solving the variational problem

\[
u_{OF} = \arg\min_u \left(\int_{\Omega_I} \left(\frac{\partial I}{\partial u} + u \cdot \nabla I \right)^2 + \alpha R(u) \right),
\]

where \(\Omega_I \subseteq \Omega\) is the domain of the image, \(\alpha \in \mathbb{R}_{>0}\) a regularization constant, and \(R\) the regularization functional [17]. This is consistent with the assumptions of brightness constancy and small displacements which are made in reason of the stability of fluorescent markers and the small intensity of the stress applied on the boundary, respectively. The first term in (2) is the data-fidelity one. It promotes displacements that properly deform the initial image onto the second one. The regularization term in (2) addresses the well-known aperture problem.

Two common choices for \(R\) include the \(L_2\) norm of the Jacobian of the displacement field [17] and its TV-L1 [11]. The
former often provides solutions that are too smooth, whereas the latter is good at restoring vector fields with sharp edges but suffers from staircasing because it favors piecewise-constant solutions. Due to the differentiation step in the reconstruction procedure, the displacements resulting from TV-L1 yield highly oscillatory strain components, in contradiction with the expectation that the constant traction on the boundaries ought to produce a smooth stress over the domain (1), while being at the same time linearly dependent on \(\varepsilon \) and \(E \).

To better inform our solver, we promote piecewise linear displacements. As compared to TV-L1, ours are smoother and better resemble solutions to the linearly elastic equations under a piecewise-constant modulus. We propose to equip the optical-flow problem with the regularisation term

\[
R(u) = \int_{\Omega} \left(||H\{u_x\}(r)||_{S_1} + ||H\{u_y\}(r)||_{S_1} \right) dr,
\]

where \(H \) denotes the Hessian operator, \(u_x \) and \(u_y \) the components of the displacement field and \(|| \cdot ||_{S_1} \) the Schatten 1-norm defined for a matrix \(X \) with singular values \(\sigma_k \) as

\[
||X||_{S_1} = \sum_k |\sigma_k|.
\]

The minimisation of the Schatten 1-norm tends to sparsify the principal curvatures of the displacement, encouraging piecewise linear solutions. In practice, we compute a discrete approximation of (3). We first compute a finite-difference approximation \(H_x, H_y \in \mathbb{R}^{2 \times 2} \) of the Hessians using each component at every point of the \((N_x \times N_y) \) pixel grid. We then take the \(\ell_1 \) norm of \(||H_x||_{S_1} + ||H_y||_{S_1} \) over all points.

The problem in (2) is convex. We solve it by accelerated proximal gradient descent (APGD) [18]. The gradient is computed directly from the OF term, whereas the proximal operator of the Hessian’s Schatten norm is computed with a fast iterative shrinkage-thresholding algorithm with early stopping (50 iterations). Since (3) is separable, the proximal can be evaluated independently for each of the two parts and later combined together.

The step size for the outer APGD algorithm is chosen as the inverse of the Lipschitz constant of the gradient of the data term \(F \) in (2). Let \(u_1, u_2 \) be two displacement fields, \(J_1 = (\nabla_x I^2, \nabla_y I^2)^T, J_2 = (\nabla_x I^2, \nabla_y I^2)^T \), and \(|| \cdot || \) the Frobenius norm. The Lipschitz constant is provided by the Cauchy-Schwarz inequality as:

\[
||\nabla F(u_1) - \nabla F(u_2)|| \leq 2 \sqrt{||J_1||^2 + ||J_2||^2}||u_1 - u_2|| \tag{5}
\]

2.3. Reconstruction of Stiffness from Displacements

We consider two reconstructions of Young’s modulus from a displacement field: direct, and indirect.

2.3.1. Direct Methods

Direct reconstructions mesh the image domain into \(N \) rectangular elements with the \((N_x \times N_y) \) pixels as nodes. By discretizing the problem in a finite-elements basis, it can be shown that (1) can be formulated as the linear system \(D e = t \). Here, \(e \) is the vector containing the Young’s modulus of each element, \(t \) is the vector corresponding to the traction, and \(D \) is a \((2N_xN_y \times N) \) sparse matrix that depends on the estimated displacements \(u_{OF} \), on Poisson’s ratio \(\nu \), and on the dimension of each element [16]. Since the matrix \(D \) is very sparse, this system of equations can be inverted very efficiently. However, this method suffers from poor conditioning. It may yield spurious reconstructions of Young’s modulus if the displacement field is inaccurate.

2.3.2. Indirect Methods

Indirect methods alleviate this conditioning problem by solving the PDE-constrained optimization problem

\[
\arg\min_E J(u,E) = \int (||u - u_{OF}||^2 + \beta ||E||^2) d\Omega,
\]

s.t. Eq. (1),

\[
\tag{6}
\]
where $\beta \in \mathbb{R}_{+0}$ is a regularization parameter. These methods can also include the OF term directly in the variational form [19], [20]. Given a stiffness map $E(\mathbf{r})$, the finite-elements method then yields a variational form of (1) for \mathbf{u}. As such, J is implicitly defined as a function of E alone, which turns the constrained problem into an unconstrained one. To solve it, we use a quasi-Newton gradient-descent algorithm where the gradient is computed using the adjoint method to avoid expensive computations. The resulting Young’s modulus is much less susceptible to inaccuracies in \mathbf{u}_{OF} because the norm of E is regularized. This comes, however, at a higher computational cost.

3. EXPERIMENTS AND RESULTS

Our claim is that OF regularized with the Hessian-Schatten norm is accurate enough to feed into a direct method. Hereafter, we refer to the combination of the two as Proposed. Combinations of other OF methods with indirect approaches are used for comparison.

Data Generation. We simulate a cell under plate compression (Figure 1). We consider (100×100) images of the cellular domain. Poisson’s ratio ν is set to 0.33, indicating that we take the material to be compressible. We model the nucleus as a disk that accounts for 10% to 30% of the surface of the cell [21]. We ascribe a dimensionless stiffness of 1 to the cytoplasm and a stiffness of 5 to the nucleus (Figure 3) [21]. This could also represent any potential granularity inside the nucleus if the whole image was considered as the nucleus. Constant and uniform traction is applied on the upper and lower part of the image (Figure 1). For each boundary-traction value and each radius of the nucleus, a variational formulation of (1) is solved for the displacements using the finite-elements method. The resulting displacements are used to create a deformed image by warping the initial one with bicubic interpolation. These two images, along with the traction on the boundaries, are used to reconstruct Young’s modulus and evaluate our method.

Evaluation Method. We denote E_c and E_n the evaluated stiffness over the cytoskeletal and nuclear domains, respectively, $\overline{E_c}, \overline{E_n}$ their mean value, and σ_c, σ_n their standard deviation. We evaluate the performance of our method with four metrics: the root-mean-square error normalized over the maximum of the true stiffness (NRMSE), the contrast-to-noise ratio CNR = $\sqrt{2(\overline{E_n} - \overline{E_c})^2/\left(\sigma_c^2 + \sigma_n^2\right)}$, the signal ratio SR = $\frac{\overline{E_n}}{\overline{E_c}}$, and the runtime of the reconstruction. Regarding the estimation of displacements, we challenge our method with the most popular OF methods used in biology: Horn and Schunck (HS) [17], TV-L1 [11], large-displacement optical flow (LDOF) [22], and iterative Lukas-Kanade (ILK) [23]. The TV-L1 and ILK implementations were taken from scikit-image, the other methods were reimplemented as per the references. Since the direct-reconstruction method collapses entirely when paired with any of these (data not shown), we only pair them with the indirect-reconstruction method. We implement it with the dolfin-adjoint library [24].

Experiment 1. We compare accuracy versus the boundary traction $||T|| \in \{0.03, 0.0325, \ldots, 0.0375\}$ with a fixed nuclear radius of 20 (Table 1). Our method runs faster than the others by two orders of magnitude. Note that this is mainly because the quality of the proposed OF enables the use of the direct method. Its computation time (2.42 ± 0.13s) is comparable to that of the other OF methods (e.g., 2.07 ± 0.11s for TV-L1). Our proposed method is also more accurate both in NRSME and SR, and achieves great contrast (Figure 3). However, its CNR is poorer than that of some of the competing methods because the regularization of E in the indirect method imposes a low variance on the reconstruction. In return, the results of the other methods greatly underestimate the magnitude of the modulus. As expected, TV-L1 does a better job at preserving the edges of the displacement than the L_2 norm in HS (Figure 3). Finally, the linearity enforced by our method captures the behavior of the elasticity equation better (Figure 2).

Experiment 2. We set the traction to $||T|| = 0.0375$, and simulate compression with the radius $R \in \{20, 22.5, \ldots, 30\}$. The conclusions are the same in terms of accuracy and performance as in Experiment 1 (Table 1). We see, however, that the TV-L1, ILK, and LDOF methods paired with an indirect-reconstruction method are much more sensitive to the size of the nucleus, while the accuracy of our method does not vary significantly. This accuracy is maintained for smaller nuclei too (Figure 3).

4. CONCLUSION

We here presented an image-based quasi-static elastography method to compute intracellular stiffness. The framework operates fast enough to be adapted for long acquisitions or 3D reconstruction. It was shown to be more accurate than other robust reconstruction methods applied to state-of-the-art optical-flow. The framework can be easily implemented on GPU for realtime applications.
5. COMPLIANCE WITH ETHICAL STANDARDS

This is a numerical simulation study for which no ethical approval was required.

6. ACKNOWLEDGMENTS

This work was funded by the TOXONUC project (ANR-19-CE13-0034-02) and partially supported by grants from the Labex IBEID (ANR-10-LABX-62-IBEID), France-BioImaging infrastructure (ANR-10-INBS-04). The authors have no relevant financial or non-financial interests to disclose.

7. REFERENCES

