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ABSTRACT

We propose an image-based elastography method to measure
the heterogeneous stiffness inside a cell and its nucleus. It
uses a widely accessible setup consisting of plate compres-
sion imaged with fluorescence microscopy. Our framework
recovers a spatial map of Young’s modulus from images of the
intracellular displacements. These displacements are mea-
sured with a novel optical-flow technique characterised by
a Hessian-Schatten norm regularizer. The aim is to favor
piecewise-linear displacements because they reproduce solu-
tions to linear elasticity problems well when the underlying
modulus is piecewise-constant, as is often the case in cells.
Our computational approach is fast enough for long time-
lapse acquisitions and 3D imaging. It is able to cope with two
common pitfalls of biological elastography: high compress-
ibility and small compressions to avoid damage. We show our
method is faster and more accurate than the state-of-the-art.

Index Terms— Nuclear mechanics, elastography, optical
flow, nuclear norm

1. INTRODUCTION

The stiffness of the cell nucleus is an important marker
for diseases as diverse as Emery-Dreifuss muscular dystro-
phy, Hutchinson-Gilford progeria syndrome, or cancer [1]. To
measure stiffness, biologists perform a simple tensile test [2],
[3]. They apply a known force on the nuclear surface, for
example with an atomic-force microscope, and measure how
much the length or perimeter of the nucleus changes. A single
figure of merit—a constant Young’s modulus E—is then de-
rived from the shape measurement using analytical versions
of Hooke’s law in some characteristic dimension [4]. While
the experimental setup and the measurements themselves are
convenient, these methods oversimplify the composition and
geometry of the nucleus and the physical relationship with the
elasticity modulus, reducing the description of the process to
a single number and also ignoring any cellular material be-
tween the probe and the nucleus. In order to deform the nu-
cleus enough, the practitioner has to significantly squeeze the

∗ These authors contributed equally to this work.

Fig. 1: Experimental setting. A plate compression of a cell (left) is imaged to
measure the displacements (right) that are later inverted to recover stiffness.

cytoskeleton at the risk of compromising the cell’s integrity.
Such an extreme handling is required to overcome the limita-
tions in the imaging process.

By contrast, medical elastography has long relied on ultra-
sound imaging to detect stiff inclusions in the body—tumors
for example—with its resolution being better matched to the
human scale [5]. To this end, a light mechanical stress is ap-
plied on the tissue, either as a static compression or dynami-
cally in the form of pressure waves. In the former case, one
then applies registration techniques to estimate the deforma-
tion fields. These have enough resolution to drive a recon-
struction algorithm that ultimately yields a map of Young’s
modulus.

Only recently has microscopy improved enough to allow
the use of similar techniques in biological settings. For exam-
ple, [6] applies a dynamical tension on cells to measure their
elasticity at the cost of a complex setup, whereas [7] lever-
ages the natural compressions of the cell. The latter, however,
can only extract dimensionless maps and at limited speed. In-
terestingly, imaging resolution has also increased in the tra-
ditional setting of nuclear probing described above [8], [9].
The result are fluorescent images with rich texture. We pro-
pose to harness this experiment to measure spatial elasticity
maps E(r) from very small static compressions that preserve
the cell’s integrity (Figure 1). To this end, we first need to
estimate the deformation from the images.

Optical flow has been used to compute tissue strain in
multiple medical imaging applications [10]. The most pop-
ular among such OF methods is based on vectorial total
variation (TV-L1) [11]. However OF by itself is not accurate
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True TV-L1 HSN-OF Profile

Fig. 2: Axial displacements in a plate-compression experiment. The Hessian-Shatten-Norm regularization (HSN-OF) enforces piecewise-linear displacements,
removing the staircasing effect. The profile is taken over the red line.

enough to estimate the fine lateral displacements required
to reconstruct sensitive stiffness maps under small compres-
sions. To overcome this limitation, most elastography meth-
ods preprocess the displacement field ”before inverting” for
Young’s modulus, for example by assuming incompressibil-
ity of the tissue [12]. Unfortunately, these approaches are not
applicable in biology because cells and their nuclei are highly
compressible. Instead of preprocessing, other methods resort
to complex optimization schemes to stabilise the elasticity
map [13], but their computational complexity is unfit for the
long acquisitions required to study cell migration [14] and do
not scale well to 3D.

We argue that the regularisation term of OF must be
chosen carefully. In particular, the piecewise constant dis-
placements enforced by the traditional choice of vectorial
total variation (TV-L1) method introduce errors in the deriva-
tives when the strain is computed. These errors are then
amplified when computing Young’s modulus from the strain.
To mitigate these effects in a way that is both fast and com-
patible with biological experiments, we propose to regularise
OF with a second-order term based on the Hessian Schat-
ten norm [15]. By favoring piecewise linear displacements,
subsequent differentiation becomes more robust and allows
for fast reconstruction methods such as [16]. Moreover, in
the linear regime of cell-safe experiments, solutions to the
elasticity equations tend to be piecewise linear when the un-
derlying modulus is piecewise constant (Figure 2). In fact,
they are exactly piecewise linear in the direction of traction
when the boundaries are free. As a result, the method is not
only stable against variations in the boundary forces and the
sizes of the nucleus, but also more accurate than other re-
construction frameworks applied to displacements computed
with OF techniques.

2. METHOD

2.1. Mechanical Model of the Cell

We consider the cell and the nucleus as continuous media in
a compact domain Ω. We consider that the applied forces
are small, which is compatible with the protection of the cel-
lular integrity. Further we assume that these forces are ap-

plied slowly enough to avoid triggering the viscous properties
of the cell. Under these conditions, the cell and the nucleus
can be represented as a linearly isotropic elastic material that
obeys to:

∇ · ς = 0, in Ω

ε(u) = λ Tr(ε(u))1+2µε(u), in Ω

ε(u) = 1
2 (∇u+∇uT), in Ω

u = g, on Γg

ς ·n = T, on ΓT,

(1)

where ς : Ω → R2 ×R2 and ε : Ω → R2 ×R2 are the second-
order stress and strain tensors, u the displacement field, λ

and µ the Lamé parameters, g and T the displacements and
applied tractions on the boundary, and n the vector that is
normal to the boundary ∂Ω = Γg ∪ΓT of the domain [4]. The
Lamé parameters are expressed using Young’s modulus (E)
and Poisson’s ratio (ν) through the relations λ = Eν

(1+ν)(1−2ν)

and µ = E
2(1+ν) . We consider E(r), r ∈ Ω, to vary across the

domain.

2.2. Estimation of Displacements from Images

Denoting by I : ΩI ×R≥0 → R≥0 the intensity function of the
images, OF methods estimate a displacement field uOF by
solving the variational problem

uOF = argmin
u

(∫
ΩI

(
∂ I
∂ t

+u ·∇I
)2

+αR(u)

)
, (2)

where ΩI ⊂ Ω is the domain of the image, α ∈ R>0 a regu-
larization constant, and R the regularization functional [17].
This is consistent with the assumptions of brightness con-
stancy and small displacements which are made in reason of
the stability of fluorescent markers and the small intensity of
the stress applied on the boundary, respectively. The first term
in (2) is the data-fidelity one. It promotes displacements that
properly deform the initial image onto the second one. The
regularization term in (2) addresses the well-known aperture
problem.

Two common choices for R include the L2 norm of the Ja-
cobian of the displacement field [17] and its TV-L1 [11]. The
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Fig. 3: Young’s modulus reconstruction of the contending methods for varying radii.

former often provides solutions that are too smooth, whereas
the latter is good at restoring vector fields with sharp edges but
suffers from staircasing because it favors piecewise-constant
solutions. Due to the differentiation step in the reconstruc-
tion procedure, the displacements resulting from TV-L1 yield
highly oscillatory strain components, in contradiction with
the expectation that the constant traction on the boundaries
ought to produce a smooth stress over the domain (1), while
being at the same time linearly dependent on ε and E.

To better inform our solver, we promote piecewise linear
displacements. As compared to TV-L1, ours are smoother and
better resemble solutions to the linearly elastic equations un-
der a piecewise-constant modulus. We propose to equip the
optical-flow problem with the regularisation term

R(u) =
∫

r∈ΩI

(
||H {ux}(r)||S1 + ||H {uy}(r)||S1

)
dr, (3)

where H denotes the Hessian operator, ux and uy the compo-
nents of the displacement field and || · ||S1 the Schatten 1-norm
defined for a matrix X with singular values σk as

||X||S1 ≜ ∑
k
|σk|. (4)

The minimisation of the Schatten 1-norm tends to sparsify the
principal curvatures of the displacement, encouraging piece-
wise linear solutions. In practice, we compute a discrete ap-
proximation of (3). We first compute a finite-difference ap-
proximation Hx,Hy ∈ R2×2 of the Hessians using each com-
ponent at every point of the (Nx×Ny) pixel grid. We then take
the ℓ1 norm of ||Hx||S1 + ||Hy||S1 over all points.

The problem in (2) is convex. We solve it by accelerated
proximal gradient descent (APGD) [18]. The gradient is com-
puted directly from the OF term, whereas the proximal opera-
tor of the Hessian’s Schatten norm is computed with a fast it-
erative shrinkage-thresholding algorithm with early stopping
(50 iterations). Since (3) is separable, the proximal can be
evaluated independently for each of the two parts and later
combined together.

The step size for the outer APGD algorithm is chosen as
the inverse of the Lipschitz constant of the gradient of the
data term F in (2). Let u1, u2 be two displacement fields,
J1 =

(
∇xI2,∇xI∇yI

)T , J2 =
(
∇xI∇yI,∇yI2

)T , and || · || the
Frobenius norm. The Lipschitz constant is provided by the
Cauchy-Schwarz inequality as:

||∇F(u1)−∇F(u2)|| ≤ 2
√

||J1||2 + ||J2||2||u1 −u2|| (5)

2.3. Reconstruction of Stiffness from Displacements

We consider two reconstructions of Young’s modulus from a
displacement field: direct, and indirect.

2.3.1. Direct Methods

Direct reconstructions mesh the image domain into Ne rect-
angular elements with the (Nx × Ny) pixels as nodes. By
discretizing the problem in a finite-elements basis, it can be
shown that (1) can be formulated as the linear system De = t.
Here, e is the vector containing the Young’s modulus of each
element, t is the vector corresponding to the traction, and
D is a (2NxNy ×Ne) sparse matrix that depends on the esti-
mated displacements uOF, on Poisson’s ratio ν , and on the
dimension of each element [16]. Since the matrix D is very
sparse, this system of equations can be inverted very effi-
ciently. However, this method suffers from poor conditioning.
It may yield spurious reconstructions of Young’s modulus if
the displacement field is inaccurate.

2.3.2. Indirect Methods

Indirect methods aleviate this conditioning problem by solv-
ing the PDE-constrained optimization problem

argmin
E

J(u,E) =
∫ (

||u−uOF||2 +β ||E||2
)

dΩ,

s.t. Eq. (1), (6)
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Experiment 1 NRMSE SR CNR Runtime (s) Experiment 2 NRMSE SR CNR Runtime (s)
Proposed 19.12 ± 0.65 7.77 ± 0.22 5.86± 1.46 5.62± 0.27 Proposed 22.27 ± 3.67 7.80 ± 0.74 6.68 ± 1.75 5.61 ± 0.20

TV-L1 + Indirect 25.92 ± 1.74 1.71 ± 0.35 3.44± 1.54 301± 181 TV-L1 + Indirect 31.50 ± 3.68 1.62 ± 0.30 4.05 ± 1.49 243 ± 176
ILK + Indirect 29.22 ± 5.46 1.63 ± 0.27 5.87 ± 1.29 201 ± 110 ILK + Indirect 32.99 ± 10.69 1.58 ± 0.17 6.16 ± 1.28 144±35

LDOF + Indirect 22.51 ± 1.97 1.60 ± 0.24 9.17± 3.59 151± 73 LDOF+ Indirect 27.82 ± 3.25 1.52 ± 0.26 5.58 ± 3.59 146± 100
HS + Indirect 21.10 ± 0.57 2.15 ± 0.19 13.26 ± 1.41 146 ± 57 HS+ Indirect 23.29 ± 3.04 2.27 ± 0.11 12.88 ± 2.04 263 ± 222

Table 1: Mean and standard deviation of the accuracy of the reconstruction for each evaluation metric.

where β ∈ R>0 is a regularization parameter. These methods
can also include the OF term directly in the variational form
[19], [20]. Given a stiffness map E(r), the finite-elements
method then yields a variational form of (1) for u. As such,
J is implicitly defined as a function of E alone, which turns
the constrained problem into an unconstrained one. To solve
it, we use a quasi-Newton gradient-descent algorithm where
the gradient is computed using the adjoint method to avoid
expensive computations. The resulting Young’s modulus is
much less susceptible to inaccuracies in uOF because the norm
of E is regularized. This comes, however, at a higher compu-
tational cost.

3. EXPERIMENTS AND RESULTS

Our claim is that OF regularized with the Hessian-Schatten
norm is accurate enough to feed into a direct method. Here-
after, we refer to the combination of the two as Proposed.
Combinations of other OF methods with indirect approaches
are used for comparison.

Data Generation. We simulate a cell under plate com-
pression (Figure 1). We consider (100× 100) images of the
cellular domain. Poisson’s ratio ν is set to 0.33, indicating
that we take the material to be compressible. We model the
nucleus as a disk that accounts for 10% to 30% of the surface
of the cell [21]. We ascribe a dimensionless stiffness of 1 to
the cytoplasm and a stiffness of 5 to the nucleus (Figure 3)
[21]. This could also represent any potential granularity in-
side the nucleus if the whole image was considered as the nu-
cleus. Constant and uniform traction is applied on the upper
and lower part of the image (Figure 1). For each boundary-
traction value and each radius of the nucleus, a variational
formulation of (1) is solved for the displacements using the
finite-elements method. The resulting displacements are used
to create a deformed image by warping the initial one with
bicubic interpolation. These two images, along with the trac-
tion on the boundaries, are used to reconstruct Young’s mod-
ulus and evaluate our method.

Evaluation Method. We denote Ec and En the evaluated
stiffness over the cytoskeletal and nuclear domains, respec-
tively, Ec,En their mean value, and σc, σn their standard
deviation. We evaluate the performance of our method with
four metrics: the root-mean-square error normalized over the
maximum of the true stiffness (NRMSE), the contrast-to-
noise ratio CNR =

√
2(Ec −En)2/(σ2

c +σ2
n ), the signal ratio

SR = En
Ec

, and the runtime of the reconstruction. Regarding

the estimation of displacements, we challenge our method
with the most popular OF methods used in biology: Horn and
Schunck (HS) [17], TV-L1 [11], large-displacement optical
flow (LDOF) [22], and iterative Lukas-Kanade (ILK) [23].
The TV-L1 and ILK implementations were taken from scikit-
image, the other methods were reimplemented as per the
references. Since the direct-reconstruction method collapses
entirely when paired with any of these (data not shown), we
only pair them with the indirect-reconstruction method. We
implement it with the dolfin-adjoint library [24].

Experiment 1. We compare accuracy versus the bound-
ary traction ||T|| ∈ {0.03,0.0325, ...,0.0375} with a fixed nu-
clear radius of 20 (Table 1). Our method runs faster than the
others by two orders of magnitude. Note that this is mainly
because the quality of the proposed OF enables the use of the
direct method. Its computation time (2.42± 0.13s) is com-
parable to that of the other OF methods (e.g., 2.07± 0.11s
for TV-L1). Our proposed method is also more accurate both
in NRSME and SR, and achieves great contrast (Figure 3).
However, its CNR is poorer than that of some of the compet-
ing methods because the regularization of E in the indirect
method imposes a low variance on the reconstruction. In re-
turn, the results of the other methods greatly underestimate
the magnitude of the modulus. As expected, TV-L1 does a
better job at preserving the edges of the displacement than
the L2 norm in HS (Figure 3). Finally, the linearity enforced
by our method captures the behavior of the elasticity equation
better (Figure 2).

Experiment 2. We set the traction to ||T||= 0.0375, and
simulate compression with the radius R ∈ {20,22.5, ...,30}.
The conclusions are the same in terms of accuracy and per-
formance as in Experiment 1 (Table 1). We see, however, that
the TV-L1, ILK, and LDOF methods paired with an indirect-
reconstruction method are much more sensitive to the size of
the nucleus, while the accuracy of our method does not vary
significantly. This accuracy is maintained for smaller nuclei
too (Figure 3).

4. CONCLUSION

We here presented an image-based quasi-static elastography
method to compute intracellular stiffness. The framework
operates fast enough to be adapted for long acquisitions or
3D reconstruction. It was shown to be more accurate than
more robust reconstruction methods applied to state-of-the-
art optical-flow. The framework can be easily implemented
on GPU for realtime applications.
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