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ABSTRACT

This work considers sampled data of continuous-domain Gaus-
sian processes. We derive a maximum-likelihood estimator for
identifying autoregressive moving average parameters while in-
corporating the sampling process into the problem formulation.
The proposed identification approach introduces exponential
models for both the continuous and the sampled processes. We
construct a likelihood function from a digitally-filtered version
of the available data which is asymptotically exact. This func-
tion has several local minima that originate from aliasing,plus
a global minimum that corresponds to the maximum-likelihood
estimator. We further compare the performance of the proposed
algorithm with other currently available methods.

Keywords— Sampling, exponential splines, continuous-
domain stochastic processes, maximum-likelihood estimation.

1. INTRODUCTION

Continuous-domain Gaussian processes are widely used in the
fields of control theory and in signal/image processing and anal-
ysis. Such processes are often assumed to be the output of a lin-
ear time-invariant (LTI) system that is driven by white Gaussian
noise. LTI systems with a rational transfer function give rise
to autoregressive moving-average (ARMA) Gaussian processes.
In practice, the available data is discrete and one is usually re-
quired to estimate the underlying continuous-domain parame-
ters from sample values. Potential examples are continuous-
domain modeling of physical phenomena, system identification,
and numerical analysis of differential operators.

The sampled version of a Gaussian ARMA process is a
discrete-domain ARMA process whose zeros and poles are cou-
pled in a non-trivial way. Recent works on this subject fall in
two broad categories: direct and indirect [5]. Most direct meth-
ods specify some equivalent discrete-domain model that is char-
acterized by the continuous-domain parameters. This discrete-
domain model is then used for minimizing a cost function. In
this way, the required continuous-domain parameters are di-
rectly estimated by the minimization process [4, 1, 8, 3, 7].An-
other example of a direct method consists of power-spectrum
parameterization [9, 2]. Indirect methods, on the other hand,
rely on standard discrete-domain system identification methods
such as the minimization of the prediction error. The discrete-
domain system is then mapped to a continuous-domain one

while preserving some required properties, such as the bi-linear
transform. Such mappings are commonplace when designing
digital filters.

Motivated by the deterministic theory of LTI systems, we ex-
ploit in this work the mathematical formulation of exponential
splines. A first study of this property was recently suggested in
[6] for the autoregressive model. Considering an ideal sampling
procedure, the autocorrelation sequence of the sampled process
corresponds to sample values of the autocorrelation function of
the original continuous-domain process. It then follows that
both autocorrelation measures are of an exponential type. An-
other point we address in this work is the Cramér-Rao bound.
This bound converges to zero for any sampling interval value
with increasing number of data points where the sampling in-
terval can take an arbitrary value. While many of the currently
available estimation algorithms are focused on base-band power
spectra, it seems possible to derive an estimator that overcomes
aliasing, as suggested here.

2. ARMA PROCESSES AND SPLINES

2.1. Motivating Example: First-Order AR Process

The autocorrelation function of a continuous-domain AR(1)
process that has a pole ats = s1 and a unit variance innova-
tion is a symmetric exponential

ϕ(t; s1) = −
1

2s1
es1|t|. (1)

The spectral density function is then

Φ(jω; s1) =
1

(jω − s1)(−jω − s1)
. (2)

The spectral density function of the sampled process is

Φd(e
jω ; s1) =

e2s1 − 1

2s1
·

1

(1− es1e−jω)(1 − es1ejω)
. (3)

The important observation is that one is able to link the
continuous-domain and the discrete-domain autocorrelations
via the Shannon-like interpolation formula

ϕ(t; s1) =

∞
∑

n=−∞

ϕ[n; s1]β(t − n; s1), (4)



whereβ(t; s1) is an interpolating basis function whose Fourier
expression is

β̂(ω; s1) =
2s1

e2s1 − 1
·
(1 − es1e−jω)(1− es1ejω)

(jω − s1)(−jω − s1)
. (5)

Observe that the latter expression is also equal to the ratioof (2)
and (3). The key property here is thatβ(t; s1) is compactly sup-
ported, which is not directly apparent from the Fourier-domain
expression (5). In fact,β(t; s1) is an exponential B-spline and
the above method generalizes for higher-order systems.

2.2. General Case

A continuous-domain ARMA process is fully characterized by
its autocorrelation function. The parameters of such a function
are given by the following vector

θ =
{

σ2, r1, . . . , rq, s1, . . . , sp
}

, (6)

where{sk} and{rk} are the poles and the zeroes of the pro-
cess, respectively. The poles are assumed to have a strictlyneg-
ative real part. The continuous-domain innovation processis
assumed to be Gaussian and its variance isσ2. Additionally,
p > q. The Laplace transform of the corresponding autocorre-
lation function is given by

Φ(s; θ) = σ2

∏q

k=1
(s− rk)(−s− rk)

∏p

k=1
(s− sk)(−s− sk)

. (7)

Definition 1 (Symmetric Exponential B-spline) The exponen-
tial B-splineβ(t; θ) with parametersθ is specified by the fol-
lowing inverse Fourier transform:

β(t; θ) = F−1

{

q
∏

k=1

(jω − rk)(−jω − rk)· (8)

·

p
∏

k=1

(1 − ejω+sk)(1− e−jω+sk)

(jω − sk)(−jω − sk)

}

(t). (9)

Definition 2 The discrete exponential B-spline kernel with pa-
rametersθ is given byBd(z; θ) =

∑p

n=−p β[n; θ]z
−n and

β̂d(ω) = Bd(e
jω).

Theorem 1 A discrete-domain process that is defined by the
ideal samples of the continuous-domain processes (7) on a uni-
form grid can be realized by a causal and stable digital filter
applied to discrete-domain white Gaussian noise. The filteris

Hd(z; θ) = σd(θ)

∏p−1

k=1
(1 − νk(θ)z

−1)
∏p

k=1
(1− ρk(θ)z−1)

, (10)

where

ρk(θ) = esk (11)

νk(θ) = roots ofBd(z; θ) inside the unit circle (12)

σ2
d(θ) = σ2 Bd(1; θ)

∏ p−1

k=1
(1 − νk(θ))2

. (13)

The inverse filter is causal and stable, too.

Corollary 1 Let θ be known. Then, the autocorrelation func-
tion of a continuous-domain ARMA process is uniquely defined
by its samples. Further,

ϕ(t; θ) =

∞
∑

n=−∞

ϕ(n; θ) · η(t− n; θ), (14)

where the interpolation kernelη(t; θ) is specified by its Fourier
transform,

η̂(ω; θ) =
β̂(ω; θ)

β̂d(ω; θ)
. (15)

This is the generalization of (4) for arbitrary ARMA(p,q) pro-
cesses.

3. MAXIMUM-LIKELIHOOD ESTIMATION

Let a continuous-domain ARMA(p,q) process be given by its
uniform samples only. Considering a large number of data
pointsN ≫ 1, the Fisher information matrix is

Ik,l(θ) ∼=
N

4π

∫ 2π

0

(

1

ϕ̂d(ω; θ)

∂ϕ̂d(ω; θ)

∂θk

)

· (16)

·

(

1

ϕ̂d(ω; θ)

∂ϕ̂d(ω; θ)

∂θl

)

dω,

wherek, l = 1, . . . , p+q+1. The CRB (Cramér-Rao Bound) is
then the inverse ofI(θ). It holds thatϕ̂d(ω; θ) is not dependent
uponN nor is the integrand of (16). Therefore, as the number
of available samples becomes larger, the CRB becomes smaller
regardless ofT . This implies that aliasing effects can be com-
pensated for by taking more measurements. It further suggests
that there exists an ML (Maximum-Likelihood) estimator that
overcomes aliasing. Motivated by this observation, we approx-
imate the log-likelihood function by means of a digital filter.

Definition 3 Let θ be known and letx be N uniform ideal
samples of the continuous-domain process (7) taken on a unit-
interval grid. The log-likelihood function ofx, including a sign
inversion, is

l(θ;x) = ln |Σ|+ x
TΣ−1

x. (17)

whereΣ [m,n] = ϕ [m− n; θ] is the autocorrelation matrix
that corresponds toθ.

Definition 4 Letθ be known. Then, the digital filtergθ is given
byGd(z) = 1/Hd(z) whereHd(z) is given in (10).

Definition 5 Letθ be known. Then,

κ(θ) =

∞
∑

n=1

n · c[n; θ]2, (18)

where

c[n; θ] =
1

n

{

νn1 (θ) + . . .+ νnp−1(θ)− ρn1 (θ)− . . .− ρnp (θ)
}

.

(19)



Theorem 2 Let θ be known and letx be N uniform ideal
samples of the continuous-domain process (7) taken on a unit-
interval grid. Then,

lim
N→∞

E

(

l(θ;x) − l̃(θ;x)
)

= 0, (20)

where

l̃(θ;x) = N lnσ2
d(θ) + κ(θ) + ‖x ∗ gθ‖

2

ℓ2
. (21)

Here, ∗ denotes discrete-domain convolution of anN -length
output sequence.

The log-likelihood function (21) has several local minima.
These local minima originate from aliasing and there exist sev-
eral continuous-domain processes that result in similar discrete-
domain power-spectrum upon sampling. These very processes
generate the local minima. The peak response of these power
spectra are distributed along the frequency axis in distinct bands
that areπ[rad/time-unit] wide. This property suggests that ev-
ery local minimum can be obtained by minimizing (21) while
allocating initial conditions that correspond to a peak response
at the required band. Following Theorem 2, the global min-
imum of (21) corresponds to a ML estimator and we suggest
here to minimize the likelihood function using several initial
conditions.

4. EXPERIMENTAL RESULTS

The proposed approach was implemented in Matlab. It was
compared with the polynomial B-spline estimator of [2]. Sev-
eral sets of the parametersθ were considered. The Monte Carlo
simulations were carried out for various sampling intervalval-
ues. These values were chosen so as to capture different alias-
ing configurations. A single Monte Carlo simulation involved
500 experiments and every experiment was carried out using
N = 100, 000 sample values. The variance parameter was set
to σ2 = 1 and was unknown to the estimation algorithm. The
value ofκ(θ) (18) was calculated using the first 500 terms in the
infinite sum. The number of local minima that were examined
wasK = 2. The estimation error is the relative MSE (Mean
Square Error) between the estimated parameter and the correct
one. For example, the estimation error of the single parameter
a0 is given by

ǫ(a0) = −10 log

(

1

500

∑500

n=1
(â0,n − a0)

2

(a0)2

)

, (22)

where â0,n is the estimation ofa0 at the n-th experiment.
The parameters{ak}

p

k=0
and {bk}

q

k=0
are the coefficients of

∏p

k=1
(s− sk) and

∏q

k=1
(s− rk), respectively.

An ARMA(2,1) estimation comparison is given in Figure
1 and in Table 1. Our results indicate that the proposed ap-
proach outperforms the polynomial-based direct method. Italso
guarantees that the estimated parameters correspond to a valid
continuous-domain model whereas this property does not nec-
essarily hold true for other discrete-domain-based methods.

5. CONCLUSIONS

In this work, we have proposed a maximum-likelihood
estimator for continuous-domain ARMA parameters from
sampled data. It utilizes an exponential B-spline framework
while introducing an exact zero-pole coupling for the sampled
process. It was shown that the Cramér-Rao bound can be made
arbitrarily small by increasing the number of samples while
considering arbitrary sampling interval values. The likelihood
function of the sampled process was approximated by means
of a digital filtering operation and was shown be valid in the
limit-in-the-mean sense. Experimental results indicate that the
proposed exponential-based approach is a preferable choice
over currently available methods that are restricted to relatively
high sampling rates.
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Table 1. Comparison of estimation errors for ARMA(2,1) processes.

Power
Spectrum

Sampling
Interval

Estimation Error [dB]

ǫ(a0) ǫ(a1) ǫ(b0) ǫ(σ2)

Φ(s; θ) [time-unit] [2] Proposed [2] Proposed [2] Proposed [2] Proposed

(s− 3)(s+ 3)

(s2 + 2s+ 26)(s2 − 2s+ 26)

(r1 = −3, s1,2 = −1± 5i)

0.3009 -18.52 -45.07 -32.18 -51.37 -12.76 -39.02 -23.37 -42.17

0.6481 -8.44 -36.85 -18.96 -33.29 -1.65 -17.42 -10.43 -22.50

1.1111 -11.60 -29.69 -0.05 -41.59 -0.26 -12.61 -11.83 -15.16

(s− 4)(s+ 4)

(s2 + 2s+ 101)(s2 − 2s+ 101)

(r1 = −4, s1,2 = −1± 10i)

0.1911 -19.51 -33.71 -32.18 -51.37 -12.76 -39.02 -23.37 -42.17

0.4115 -14.48 -34.78 -18.96 -33.29 -1.65 -17.42 -10.43 -22.50

0.7055 -19.96 -29.00 -0.05 -41.59 -0.26 -12.61 -11.83 -15.16
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Fig. 1. Comparison of estimation errors. Shown here are Monte Carlo simulation results for a continuous-domain ARMA(2,1)
process. The poles of the process ares1,2 = −1 ± 5i, the zero isr1 = −3, and the variance isσ2 = 1. The number of samples is
N = 100, 000.


