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ABSTRACT while preserving some required properties, such as thiaéul

This work considers sampled data of continuous-domain Gaudransform.  Such mappings are commonplace when designing
sian processes. We derive a maximum-likelinood estimator f digital filters. L

identifying autoregressive moving average parameterurhi Motivated by the deterministic theory of LTI systems, we ex-
corporating the sampling process into the problem fornmrat plo_|t in this _work the mathematmal formulation of exponf_aht
The proposed identification approach introduces expoalenti SPIines. A first study of this property was recently suggeste
models for both the continuous and the sampled processes. W for the autoregressive model. Considering an ideal saugip
construct a likelihood function from a digitally-filtereession ~ Procedure, the autocorrelation sequence of the sampleggso

of the available data which is asymptotically exact. Thisgu COrresponds to sample values of the autocorrelation fomct

tion has several local minima that originate from aliasipigs ~ the original continuous-domain process. It then followat th

a global minimum that corresponds to the maximum-likelitioo POth autocorrelation measures are of an exponential type. A
estimator. We further compare the performance of the pregos other point we address in this work is the Cramér-Rao bound.

algorithm with other currently available methods. This bound converges to zero for any sampling interval value
with increasing number of data points where the sampling in-

Keywords— Sampling, exponential splines, continuous-era| can take an arbitrary value. While many of the cuiyent
domain stochastic processes, maximum-likelihood esiimat 5\ 5ilable estimation algorithms are focused on base-bawéip
spectra, it seems possible to derive an estimator that oners
1. INTRODUCTION aliasing, as suggested here.

Continuous-domain Gaussian processes are widely usee in th
fields of control theory and in signal/image processing arad-a
ysis._ Suc_h processes are often assgmeq to be the.outpgnef alp ¢ Motivating Example: First-Order AR Process

ear time-invariant (LTI) system that is driven by white Gsias

noise. LTI systems with a rational transfer function giveeri The autocorrelation function of a continuous-domain AR(1)
to autoregressive moving-average (ARMA) Gaussian presess process that has a pole at= s; and a unit variance innova-
In practice, the available data is discrete and one is ystel ~ tion is a symmetric exponential

quired to estimate the underlying continuous-domain param

2. ARMA PROCESSES AND SPLINES

. . 1
ters from sample values. Potential examples are contiruous o(t;s1) = ~5ar el (1)
domain modeling of physical phenomena, system identiGioati 51
and numerical analysis of differential operators. The spectral density function is then
The sampled version of a Gaussian ARMA process is a
discrete-domain ARMA process whose zeros and poles are cou- d(jw;s1) = — 1 : ] )
pled in a non-trivial way. Recent works on this subject fall i (Jw = s1)(—jw — 1)

two broad categories: direct and indirect [5]. Most direetim
ods specify some equivalent discrete-domain model th&ids ¢
acterized by the continuous-domain parameters. Thisetiscr ) e2s1 _ 1 1

domain model is then used for minimizing a cost function. In Py(e’;s1) = ) (1—este—@)(1 — es1eiv)’ (3)
this way, the required continuous-domain parameters are di

rectly estimated by the minimization process [4, 1, 8, 3Af-  The important observation is that one is able to link the
other example of a direct method consists of power-spectrur@ontinuous-domain and the discrete-domain autocorogigti
parameterization [9, 2]. Indirect methods, on the otherdhan Via the Shannon-like interpolation formula

rely on standard discrete-domain system identificatiorhoas -

such as the mlnlmlzauon of the prediction error. The drtﬂ_:—re ot s)) = Z oln; s1]8(t — n; s1), (4)
domain system is then mapped to a continuous-domain one

The spectral density function of the sampled process is

n=—oo



wheref(t; s1) is an interpolating basis function whose Fourier
expression is

281
e2s1 — 1

B(W;Sl) =

(1 —este™99)(1 — es1edv)

(Jw — s1)(—jw — s1)
Observe that the latter expression is also equal to theaohfR)
and (3). The key property here is th#t; s1) is compactly sup-
ported, which is not directly apparent from the Fourier-éim
expression (5). In faci?(¢; s1) is an exponential B-spline and
the above method generalizes for higher-order systems.

(%)

2.2. General Case

Corollary 1 Let# be known. Then, the autocorrelation func-
tion of a continuous-domain ARMA process is uniquely defined
by its samples. Further,

oo

p(t:0) = D @(n;0) -t —n;0),

n=—oo

(14)

where the interpolation kernel(t; 0) is specified by its Fourier
transform,

_ ?(W;H)

Ba(w; 0)
This is the generalization of (4) for arbitrary ARMAG) pro-

7i(w; 0)

. (15)

A continuous-domain ARMA process is fully characterized bycesses.

its autocorrelation function. The parameters of such atfanc
are given by the following vector

asp} ) (6)

_ {2
9—{0 sTLyeeosTqyS1y- -

where{s;} and{r;} are the poles and the zeroes of the pro-

cess, respectively. The poles are assumed to have a sirigity
ative real part. The continuous-domain innovation prog¢gss
assumed to be Gaussian and its variancg?is Additionally,

p > ¢. The Laplace transform of the corresponding autocorre-

lation function is given by

2 [Tk (s = k) (=8 = 7¢)

b (s—sp)(=s—sp)

Definition 1 (Symmetric Exponential B-spline) The exponen-
tial B-spline 5(t; #) with parameterd is specified by the fol-
lowing inverse Fourier transform:

O(s;0) =0 (7)

B(t;0)

F {H (o —r)(—jw—r)- (8
k=1

11 ( } (). (9)
k=1

Definition 2 The discrete exponential B-spline kernel with pa-
rametersd is given byBu(z;0) = >°7_ B[n; 6]z~ and

Ba(w) = Ba(e?).

1— ejw+5k)(1 _ e—.jw+8k)

(Jw = sk)(—jw — si)

Theorem 1 A discrete-domain process that is defined by thewhere X [m, n|

3. MAXIMUM-LIKELIHOOD ESTIMATION

Let a continuous-domain ARMA(q) process be given by its
uniform samples only. Considering a large number of data
points N > 1, the Fisher information matrix is

N o 1 9¢a(w;b)
) = | (@(w;e) = ) (16)
] 1 6¢)d(w;9)
(sad(w;o) o0, )dw’

wherek,l =1,...,p+¢+1. The CRB (Cramér-Rao Bound) is
then the inverse of (#). It holds thatp,(w; 6) is not dependent
uponN nor is the integrand of (16). Therefore, as the number
of available samples becomes larger, the CRB becomes smalle
regardless of". This implies that aliasing effects can be com-
pensated for by taking more measurements. It further stgges
that there exists an ML (Maximume-Likelihood) estimatorttha
overcomes aliasing. Motivated by this observation, we ayppr
imate the log-likelihood function by means of a digital filte

Definition 3 Let ¢ be known and lek be N uniform ideal
samples of the continuous-domain process (7) taken on a unit
interval grid. The log-likelihood function of, including a sign
inversion, is

1(0;x) = In |2 +x"2 7 x. (17)

©|m — n; 0] is the autocorrelation matrix

ideal samples of the continuous-domain processes (7) ofi-a urthat corresponds té.

form grid can be realized by a causal and stable digital filter
applied to discrete-domain white Gaussian noise. The fiter

[0 (1 —w(9)z7Y)

Hy(z;0) = 04(6) ENEYROGDE (10)
where
P (0) e’ (11)
vp(0) = roots of B4(z; 0) inside the unit circle (12)
o30) = o —palil) (13

o P .
[T%=: (1 —wi(6))?
The inverse filter is causal and stable, too.

Definition 4 Let# be known. Then, the digital filteg is given
by Gai(z) = 1/H4(z) whereHy(z) is given in (10).

Definition 5 Letd be known. Then,

k(0) = Z n - c[n; 0)?, (18)
n=1
where
o[ 0] = % [00) + .+ 71 (0) = p2(B) — ... — pr(B)}

(19)



Theorem 2 Let & be known and letx be N uniform ideal 5. CONCLUSIONS

samples of the continuous-domain process (7) taken on a unit
interval grid. Then, In this work, we have proposed a maximum-likelihood

estimator for continuous-domain ARMA parameters from

lim E(l(@;x) _I(o;x)) =0, (20) sampled data. It utilizes an exponential B-spline framéwor
N=reo while introducing an exact zero-pole coupling for the sasdpl
where process. It was shown that the Cramér-Rao bound can be made

. arbitrarily small by increasing the number of samples while

1(6;%) = NInog(6) + k(0) + [[x * goll7, - (21)  considering arbitrary sampling interval values. The itkebd
function of the sampled process was approximated by means
of a digital filtering operation and was shown be valid in the
limit-in-the-mean sense. Experimental results indichtd the

The log-likelihood function (21) has several local minima. Proposed exponential-based approach is a preferable echoic
These local minima originate from aliasing and there exagt s OVer currently available methods that are restricted @il
eral continuous-domain processes that result in simitardte- ~ Nigh sampling rates.
domain power-spectrum upon sampling. These very processes
generate the local minima. The peak response of these power
spectra are distributed along the frequency axis in disbiands
that arer[rad/time-unit] wide. This property suggests that ev-
ery local minimum can be obtained by minimizing (21) while 6. REFERENCES
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Table 1. Comparison of estimation errors for ARMA(2,1) processes.

Power Sampling Estimation Error [dB]
Spectrum Interval e(ao) e(az) e(bo) e(o?)
D(s;6) [time-unit] [2] Proposed [2] Proposed [2] Proposed [2] Propsed
0.3009 -18.52 -45.07 -32.18 -51.37 -12.76 -39.02 -23.37 .1'A2
(s—3)(s+3)
(s2 + 25+ 26)(s? — 2s + 26) 0.6481 -8.44 -36.85 -18.96 -33.29 -1.65 -17.42 -10.43 @25
(ry = =3, s1.0 = —1 =+ 5i) 1.1111 -11.60 -29.69 -0.05 -41.59 -0.26 -12.61 -11.83 45.1
0.19112 -19.51 -33.71 -32.18 -51.37 -12.76 -39.02 -23.37 .1'A2
(s—4)(s+4)
(s?2 +2s 4 101)(s% — 25+ 101) 0.4115 -14.48 -34.78 -18.96 -33.29 -1.65 -17.42 -10.43 5@2.
(ry = —4, 510 = —1+10i) 0.7055 -19.96 -29.00 -0.05 -41.59 -0.26 -12.61 -11.83 45.1
® - Proposed ‘ . ® - Proposed ‘ ‘ ‘ ‘ ‘ ‘
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Fig. 1. Comparison of estimation errors. Shown here are MonteoGanhulation results for a continuous-domain ARMA(2,1)
process. The poles of the process are = —1 + 5i, the zero is; = —3, and the variance is?> = 1. The number of samples is
N =100, 000.



