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Abstract—We consider the task of estimating an operator from
sampled data. The operator, which is described by a rational
transfer function, is applied to continuous-time white noise
and the resulting continuous-time process is sampled uniformly.
The main question we are addressing is whether the stochastic
properties of the time series that originates from the sample
values of the process allows one to determine the operator.
We focus on the autocorrelation property of the process and
identify cases for which the sampling operator is injective.
Our approach relies on sampling properties of almost periodic
functions, which together with exponentially decaying functions,
provide the building blocks of the autocorrelation measure. Our
results indicate that it is possible, in principle, to estimate the
parameters of the rational transfer function from sampled data,
even in the presence of prominent aliasing.

I. INTRODUCTION

Models that are based on stochastic differential equations
are widely used for describing numerous physical phenomena.
We consider in this work stochastic differential equations that
have constant coefficients. Such equations are characterized by
a rational transfer function and are equivalent to the filtering
of white noise. In practice, the available data is discrete, and
one is often required to estimate continuous-time parameters
from sampled data. The stochastic properties of the time series
that originates from such processes depend on the constant
coefficients, and the question we are raising here is whether
the sampling process is injective in the sense that there is
a one-to-one mapping between the continuous-time and the
discrete-time models.

Within the context of state-space autoregressive represen-
tation, it is known that stochastic differential equations are
mapped to stochastic difference equations upon sampling. The
z transform description of the difference equation is based on
the exponential values of the poles (the roots of the rational
transfer function); and for that reason, currently available
estimation algorithms assume that there is an ambiguity in
determining their imaginary part value, as the exponential
function is invariant to 2πi increments in its argument. In order
to overcome this ambiguity, current estimation approaches
require high sampling rate values for avoiding aliasing [3]–
[10]. They also restrict the imaginary part of the poles to
be less than π/T where T is the sampling interval. The
z transform description, however, includes non-exponential
terms as well, and this fact has not been taken into account
so far.

We revisit in this work the ambiguity assumption of sampled
autoregressive continuous-time processes, and identify cases

for which the sampling operator is injective when applied to
the autocorrelation function. We will show that there is no
ambiguity even in the presence of prominent aliasing. To this
aim, we introduce two alternative descriptions for the poles
of the model: one is used for deriving an explicit expression
for the autocorrelation function, while the other is used for
assigning a Lebesgue measure to subsets of poles. The build-
ing blocks of the autocorrelation function are exponentially
decaying terms and almost periodic functions; and we exploit
this structure for proving uniqueness of the sampled model.

II. THE PROBLEM

We consider the following stochastic process

x(t) =

∫ ∞
0

h(t− τ ; θ)w(τ) dτ, (1)

where w(t) is a Gaussian or non-Gaussian white noise process.
The shaping filter h(t; θ) is given in the Fourier domain by

H(ω; θ) =
1∏p

n=1(iω − sn)
, (2)

where θ = (s1, s2, . . . , sp) ∈ Cp is composed of the poles
of H(ω; θ). The real part of each pole is strictly negative
and complex poles appear in conjugate pairs. Assuming that
w(t) is white with finite variance, σ2, and that t � 0, the
autocorrelation function of x(t) is given in the Fourier domain
by Φ(ω; θ, σ2) = σ2

∣∣H(ω; θ)
∣∣2. In this work we investigate

the injective property of the sampling operator x(t)→ {x(n)}
while assuming that p is known. Specifically, we raise the
following question: does the time series that originates from
the sampled version of x(t) allow one to recover θ?

III. ASYMPTOTIC PROPERTIES OF THE AUTOCORRELATION
FUNCTION

A. Alternative representations to H(ω; θ)

We introduce two alternative parameter vectors, θ̃ and θ̄,
that will be used for deriving an explicit formula for the
autocorrelation function ϕ(t; θ), and for associating subsets of
θ with a measure in Rp. Let θ = (s1, . . . , s2m, s2m+1, . . . , sp)
where the first 2m poles are complex, and conjugate pairs
appear sequentially. Additionally, for a given complex pair,
we require the one with positive imaginary part to be listed
first. Our first alternative representation is based on decay rates
and modulation values. It extends the representation of [11]
in the following manner,

θ̃ = (a1, b1, a2, b2, . . . , am, bm, am+1, . . . , ap−m), (3)
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where a1, . . . ap−m are the strictly negative real parts of the
poles, and b1, . . . bm are the strictly positive imaginary parts.
The vector θ̃ is a point in Rp and this identification can be
made unique by imposing a dictionary-type ordering:
• 0 > a1 ≥ a2 ≥ · · · ≥ am;
• 0 > am+1 ≥ am+2 ≥ · · · ≥ ap−m;
• if ak = ak+1, then bk+1 ≥ bk.

The difference in sign between the a’s and b’s allows us to
distinguish the two types of poles, so that there is no confusion.

The second alternative parameter vector θ̄ indicates multi-
plicities of poles and will be used for obtaining an explicit
formula of autocorrelation functions

θ̄ = (s̄1,m1, s̄2,m2, . . . , s̄L,mL). (4)

The multiplicity of a pole s̄l is represented by ml.

Definition 1. The collection of all parameter vectors θ is Ω(p).
This is also the collection of all parameter vectors θ̃ or θ̄.

B. The autocorrelation function

The rational form of H(ω; θ) is known to yield an autocor-
relation function that is a sum of Hermitian symmetric expo-
nentials, as the result of a decomposition in partial fractions
[1]. The explicit formula is obtained as follows.

Proposition 1. Let θ̄ = (s̄1,m1 . . . , s̄L,mL) ∈ Ω(p). Then,

ϕ(t; θ̄) = (−1)p
L∑
`=1

e−λ
1/2
l |t|

ml∑
n=1

n−1∑
k=0

dl,n,k |t|n−1−k , (5)

where

λl = s̄2l (6)

P (ξ) =

L∏
l=1

(ξ − λl)ml (7)

cl,n = lim
ξ→λl

1

(ml − n)!

dml−n

dξml−n

(
(ξ − λl)ml

P (ξ)

)
(8)

dl,n,k =
(−1)ncl,n(n− 1 + k)!

(n− 1)!k!(n− 1− k)!(2λ
1/2
l )n+k

, (9)

and λ1/2l ∈ C denotes the principal square root of λl.

Definition 2. Two parameter vectors θ1, θ2 ∈ Ω(p) are equiv-
alent if there exists α ∈ R such that ϕ(n; θ1)+α·ϕ(n; θ2) = 0
for all n ∈ Z. If θ1 is not equivalent to any distinct θ2, then
it is unique.

When the uniqueness property holds, there is a one-to-one
mapping between the autocorrelation function and its sampled
version. The sample value of the autocorrelation function
can then be estimated from the available sample values of
x(t). The uniqueness property is related to linear combina-
tions of autocorrelation functions. In (5), the real parts of
the parameters λ1/2l determine exponentially decaying terms,
while the imaginary parts determine periods of trigonometric
polynomials. In the case of multiple poles, a polynomial
term multiplies the complex exponential. Linear combinations

of these functions also have the same basic structure. We
generalise this structure in the following definition.

Definition 3. We denote by X the class of functions of the
form

L∑
l=1

Ml∑
m=0

Tl,m(|t|) |t|m eal|t| (10)

where 0 > a1 > a2 > · · · > aL and each Tl,m is a
trigonometric function.

We note that Tl,m(t) ∈ AP(R,R), which is the space of
almost periodic functions. Of particular interest is the fact
that uniform samples of almost periodic functions lie in the
normed space of almost periodic sequences AP(Z,R) (cf. [2,
Proposition 3.35]), and we shall exploit this fact to verify
uniqueness.

Definition 4. [2, pp.94-95] For any integer n, the mean value
of f ∈ AP(Z,R) is

M(f) = lim
k→∞

f(n+ 1) + f(n+ 2) + · · ·+ f(n+ k)

k
. (11)

Note that we are free to choose any integer n; however, the
limit is independent of this choice. A norm for AP(Z,R) is
given by

‖f‖2AP(Z,R) = M
(
|f |2

)
. (12)

Theorem 1. If f ∈ X and f(n) = 0 for all integers n, then
the functions Tl,m must also satisfy Tl,m(n) = 0.

The value of Theorem 1 is that it essentially allows us to
compare functions from X in a segmented fashion, i.e. ac-
cording to decay rates. For example, suppose ϕ(t; θ) contains
a term T (|t|) |t|m ea|t|, where T (|n|) |n|m is not identically 0.
Then it can not be equivalent to any autocorrelation function
that lacks a term with similar decay. We shall use this result to
show that the uniform sampling operator is injective for large
sub-collections of Ω(p).

IV. UNIQUENESS PROPERTIES

We consider two subsets of Ω(p): H(ω; θ) is composed of
real poles only; and real and imaginary poles with minimal
restrictions.

Lemma 1. The elements of Ω(p) that are composed entirely
of real poles are unique.

Definition 5. Let Ω(p)∗ be the collection of parameter vectors
θ̃ satisfying:
• ak1 6= ak2 for k1 6= k2;
• each bk is an irrational multiple of π.

Proposition 2. As a subset of Rp, the complement of Ω(p)∗

in Ω(p) has Lebesgue measure 0.

Proposition 3. If an admissible vector θ̃1 ∈ Ω(p)∗ is equiv-
alent to a vector θ̃2 ∈ Ω(p), then θ̃2 must have the same
number of complex pairs of poles as θ̃1. Furthermore, the
complex pairs should exist at the same decay rates.
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Proposition 4. Suppose

θ̃1 = (a1, b1, . . . , am, bm, am+1, . . . , ap−m) ∈ Ω(p)∗ (13)

is equivalent to

θ̃2 = (a1, β1, . . . , am, βm, αm+1, . . . , αp−m) ∈ Ω(p). (14)

Then al = αl for all l.

Proposition 4 implies that any vector of parameters that is
equivalent to a vector of parameters in Ω(p)∗ has the same
real part values. The autocorrelation function in such a case
is given by

ϕ(t; θ̃1) = (−1)p
m∑
l=1

2eal|t|
(
<(γl) cos(bl |t|)−

−=(γl) sin(bl |t|)
)

+

p−m∑
l=m+1

γle
al|t|

(15)

where for l ≤ m

γl :=

−8i(al + ibl)albl
∏

l′ 6=l,l′≤m

(
(al + ibl)

2 − (al′ + ibl′)
2
)

(
(al + ibl)

2 − (al′ − ibl′)2
) ∏
l′>m

(
(al + ibl)

2 − a2l′
)]−1

and for l > m

γl :=

−2al
∏
l′≤m

(
a2l − (al′ + ibl′)

2
)(
a2l − (al′ − ibl′)2

)
∏

l′ 6=l,l′>m

(a2l − a2l′)

−1 .
Theorem 2. Let f1 and f2 be functions of the form

f1(t) = γ1 cos(b |t|) + γ2 sin(b |t|) (16)
f2(t) = γ3 cos(β |t|) + γ4 sin(β |t|), (17)

where γ1, γ2, γ3, γ4 are non-zero real numbers, b, β are pos-
itive real numbers, and b is an irrational multiple of π. If
f1(n) = f2(n) for all non-negative integers n, then γ1 = γ3,
γ2 = ±γ4, and b = β + 2πk for some integer k.

Lemma 2. Let θ̃1 ∈ Ω(p)∗ be of the form (13) with corre-
sponding autocorrelation function ϕ(t; θ̃1) as defined in (15).
Let θ̃2 ∈ Ω(p) be of the form (13), with autocorrelation
function ϕ(t; θ̃2) as defined in (15) where γl is replaced by γ′l
and bl is replaced by βl. If θ̃1 is equivalent to θ̃2, then there
is a positive number σ such that

σ2γl = γ′l or σ2γ∗l = γ′l (18)

for every l.

Lemma 2 provides a practical criterion for determining
uniqueness. According to the lemma, uniqueness translates
into a set of polynomial equations that can be simplified by
means of Gröbner basis algorithms. If the reduced Gröbner

basis has only trivial solutions, then uniqueness is guaranteed.
We utilized this property for obtaining the following results.

Theorem 3. [11] Every element of Ω(1) is unique.

Theorem 4. [11] Every element of Ω(2)∗ is unique.

Theorem 5. Every element of Ω(3)∗ is unique.

Finding reduced Gröbner bases for p > 3 is computationally
demanding, and we suggest to exploit Lemma 2 for a limited
number of values of k. That is, verifying uniqueness for a
finite number of modulation values b = β + 2πk.

V. CONCLUSION

In this work, we investigated the injective properties of
sampled continuous-time stochastic processes. We considered
uniform sampling of processes with rational power spectrum
and identified cases for which the sampling operator is injec-
tive when applied to the autocorrelation function. Our analysis
relies on the sampling properties of almost periodic functions,
which are the building blocks of the autocorrelation function
of such processes. By removing a zero-measure set of vectors
of parameters we derived a criterion for the uniqueness of
the sampled model, and we proved the injective property
of several rational operators. Our results indicate that the
ambiguity assumption of sampled autoregressive models does
not hold true, and that it is possible in principle to estimate the
parameters of the rational operator from sampled data, even
in the presence of prominent aliasing.
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