Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Myocardial Perfusion
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Myocardial Perfusion Assessment by Use of System Identification Method in a One-Compartment Model

M. Kocher, J.-L. Daire, P. Thévenaz, T. Schindler, P.-F. Keller, D. Didier, J.-P. Vallée

Proceedings of the Twenty-Ninth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, in conjunction with the Biennial Conference of the French Society of Biological and Medical Engineering (EMBC'07), Lyon, French Republic, August 23-26, 2007, pp. 4492-4495.


Cardiovascular magnetic resonance has been shown to provide high data quality for myocardial perfusion assessment. However, to analyze the perfusion data, some signal processing and modeling is needed to correct for motion related artifacts and limited spatial resolution. This study describes a method based on system identification, allowing, after a first step of image registration, to integrate and correct the partial volume effect in the myocardium perfusion quantification. This method is then applied to patients with coronary artery disease or hypertrophic obstructive cardiomyopathy.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/kocher0701.html,
AUTHOR="Kocher, M. and Daire, J.L. and Th{\'{e}}venaz, P. and Schindler,
	T. and Keller, P.F. and Didier, D. and Vall{\'{e}}e, J.P.",
TITLE="Myocardial Perfusion Assessment by Use of System Identification
	Method in a One-Compartment Model",
BOOKTITLE="Proceedings of the Twenty-Ninth Annual International
	Conference of the {IEEE} Engineering in Medicine and Biology
	Society, in conjunction with the Biennial Conference of the French
	Society of Biological and Medical Engineering ({EMBC'07})",
YEAR="2007",
editor="",
volume="",
series="",
pages="4492--4495",
address="Lyon, French Republic",
month="August 23-26,",
organization="",
publisher="",
note="")

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved