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Abstract— We present an algorithm for nonlinear multi-
dimensional registration. The correspondence function is
represented in a spline space. We also use the cubic splines
to interpolate the volumetric data to be registered. We use
a multiresolution strategy, which gives us robustness and
additional speedup. We analyze the computational com-
plexity of the algorithm and its performance using different
multidimensional optimization methods. Finally, we present
an application of the algorithm for registering ECD SPECT
images for realignment of corresponding Xenon inhalation
SPECT images.

I. INTRODUCTION

Image registration has numerous practical applications
including recognition, coding, data fusion, target tracking,
and others. In medical image processing, registration is
used for comparing images from different modalities, dif-
ferent subjects, different points in time etc., see for ex-
ample [1]. The registration algorithm described in this
article presents several important distinguishing features:
First, it is applicable to images with any number of dimen-
sions. Second, our algorithm looks for the correspondence
(or warping) function among splines, which can approxi-
mate any function with arbitrary precision by varying the
step size and thus the number of parameters. Moreover,
thanks to the compact support of the basis functions, the
time to evaluate the criterion and its derivatives does not
depend on the number of parameters describing the cor-
respondence function. Finally, our algorithm uses a spline
model also to interpolate the deformed image, which per-
mits us to get high-order approximation and to explicitly
evaluate its derivatives. The ideas used are similar to those
found in [2] which uses hierarchical finite elements in the
context of motion coding. It is in extension of our earlier

work [3].

II. PROBLEM DEFINITION

Let us consider two N-dimensional discrete signals f,(i)
and f;(i) (where i € Z"), which we will call reference and
test images, respectively. Suppose that these discrete im-
ages are sampled versions of continuously-defined images
fe(x) and ff(x). Taking a correspondence (or warping)
function g(x), we can get a warped version of the test im-
age fu(x) = ff(g(x)). We want to find such a warping
function g, so that the warped image f,, is as close as pos-

sible to the reference image f;, in the sense of the SSD
criterion
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where the summation is taken over all pixels in the refer-
ence image. We generate a continuous version ff of the
discrete image f; by cubic spline interpolation.
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We represent the correspondence function g using splines
as well. The model is parameterized with a moderate num-
ber of locally influent coefficients. The function g is a mul-
tivariate and multidimensional function RY — RY.
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where 3,(x) is a tensor product of centered B-splines of
degree 7, that is
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We see that g is a linear combination of basis functions
B, placed on a rectangular grid. The scale parameter h
governs the node spacing, the total number of parameters,
and the smoothness of the solution.

In some cases, the registration problem needs a regular-
ization factor to make it well-posed, or to privilege likely
solutions. Depending on the particular task, various regu-
larizations can be justified. We investigated for example:
(a) a Tikhonov stabilizer penalizing non-linear deforma-
tions
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(b) a barrier function penalizing locally non-invertible func-
tions

B, = / exp (—a det(Ve)) dx (6)



and (c) a very simple norm measuring the distance of g
from identity
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We can now formulate our problem as finding a set of
coefficients ¢ minimizing a joint criterion E. = F + vE,,
where E, is the chosen regularization factor.

III. OPTIMIZATION ALGORITHM

We have evaluated three algorithms for solving our op-
timization problem: adaptive step gradient descent (GD),
conjugate gradients (CG), and Marquardt-Levenberg-like
regularized Newton minimization (ML). The ML method
is usually the most efficient algorithm of the three in terms
of the number of iterations but, as it requires evaluation of
the Hessian matrix and its inversion, this does not neces-
sarily translate into the fastest computation time.

To improve the robustness and convergence speed of the
minimization, a multiresolution approach is used. The
problem is first solved with coarse-resolution versions of
the images. Then the solution is progressively improved at
finer levels.

An example of the behavior of the three algorithms is
shown in Figure 1. From this and other experiments, we
found the ML method to be the most favorable.

IV. EXPLICIT DERIVATIVES

Thanks to our spline model for both the image and the
deformation function, the partial derivatives of F with re-
spect to parameters ¢ (which we need for an efficient opti-
mization) can be found explicitly. The components of the
gradient and Hessian are given by the following expressions:
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where e; has been defined as f, (i) — f,(i) and the partial
derivatives of ff can be calculated from (2) simply as
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Second-order partial derivatives are obtained in a similar
fashion. As B-splines have a compact support of length 4,
there is only 4N non-zero terms in the above sum. Simi-
larly, there is also only a limited number of non-zero terms

in (8 and 9).

V. COMPUTATIONAL COMPLEXITY

Let us give a rough estimate of the computational com-
plexity of the registration process by counting an approx-
imate number of arithmetic operations needed for a sin-
gle evaluation of FE, its gradient, and its Hessian. We
work with images containing n;, pixels and warping func-
tions described by n. x N parameters. The evaluation
of the tensor product [, costs about 37N operations.
Thus, evaluating one component of g at one point takes
(r+ 1D)N(3rN +2) =~ 3NrN 1 where (r + 1)V is the sup-
port of 3,.. Evaluating all N components of g at all n
pixel positions costs 3N2n,rV+1 operations. In the same
way, we can approximate the number of operations needed
to evaluate f; at all pixel positions, which brings the to-
tal cost of calculating f,, to 3Nny(NrV+Tt 4 ¢N+1). The
evaluation of E adds to it 3n; operations.

The evaluation of the gradient and the Hessian can be op-
timized by elimination of common subexpressions, mainly
by precalculating the values of the B-splines appearing in
expressions (8) and (9), and the derivatives of ff. The first
derivatives of f{ can be calculated in about 8 Nnyg™+1 op-
erations; the B-spline values add another 3Nnyr2. Since
each image pixel influences only (r + 1)V components of
the gradient, thanks to the compact support of 3., the
final assembling of the gradient requires no more than
4Nny(r + 1)V operations.

To calculate the Hessian, second derivatives of ff must
be calculated, which can be done in 4N2nyqN*! opera-
tions. As each image pixel influences (r 4+ 1)?~ compo-
nents of the Hessian, the final assembling of the Hessian
takes 4N2ny(r + 1)?V operations.

Note that both the gradient and Hessian evaluation costs
are independent of the number of parameters. This is
a very favorable feature of our method. Furthermore, the
above analysis suggests that the complexity of calculating
E, its gradient VE, and Hessian V2E, depends linearly on
the number of image pixels n;, and nonlinearly on param-
eters N, r, and ¢q. If we substitute N = r = ¢ = 3 into
the expressions above, we find that the ratio of the three
complexities are 1 : 2 : 40, which corresponds very well to
the timings measured practically and shown in Table I.

VI. SPECT IMAGE REGISTRATION

We applied our algorithm to the registration of ECD!
and Xenon inhalation SPECT images [4]. These image
modalities are used to visualize the blood flow in the brain.
The Xenon method is non-invasive, and the resulting im-
ages contain very little anatomical information. On the
other hand, the ECD method requires intravenous injec-
tion, and the resulting images show also anatomical struc-
tures in the brain. Both methods yield a 3D volume of
pixels obtained by tomographic reconstruction procedure.

The position of the subjects’ heads in the scanner differ
as well as the head dimensions and the size of the internal
structures of the brains. Therefore, in order to compare
and evaluate the results of Xenon SPECT examination,

I Technetium Ethylene Cysteine Diethylester



criterion

0
[ 100 200 300 400 500 600
iteration

Fig. 1.

800 900 1000

criterion

0
0 50 100

150 200 250 300 350 400 450 500
time [s]

Comparison of gradient descent, conjugated gradients, and Marquardt-Levenberg optimization algorithm performances. The graphs

give the value of the finest-level SSD criterion of all successful (i.e., criterion-decreasing) iterations as a function of the number of criterion
evaluations and execution time. The peaks are caused by transitions between resolution levels.

r 2 3 3

Ne IXO6X6X0 | 3X6X06X6|3x4x4x4

FE 4.6 6.4 6.4

E. VE 10.7 13.4 13.4

E,VE, V’E 50.1 224.2 224.6
TABLE I

THE TIME IN SECONDS TO EVALUATE THE CRITERION F, ITS GRADIENT VE, AND HESSIAN V2E, FOR A VOLUME OF 64 X 64 X 17 VOXELS
APPROXIMATED BY CUBIC SPLINES, AS A FUNCTION OF THE SPLINE DEGREE 7 USED TO MODEL THE DEFORMATION AND THE SIZE OF THE

PARAMETER GRID 7.

the volumes being compared (from different subjects) have
to be registered.

We have chosen to first register the ECD SPECT images
of the two subjects, and to apply the deformation found
to the Xenon SPECT images. The Xenon SPECT images
cannot be registered directly, because they contain too lit-
tle anatomical information.

Once this method is perfected and applied to a large
body of volunteers, an atlas of Xenon SPECT images will
be created, permitting to use this non-invasive and fast
method for diagnostical comparison of brain activities of
a subject with an atlas.

As for the real application the true correspondence be-
tween the two volumes is not known and it is therefore dif-
ficult to evaluate the performance of the registration algo-
rithm, we have chosen to test it using artificially generated
random deformation, using the methodology we described
in [3].

Figure 2 gives an example of the SPECT images and of
the difference before and after registration for artificially
generated deformation. You can see that the SPECT im-
ages are rather blurred, which augments the difficulty of
the registration task. Note also that the differences in the
registered images are significantly reduced. Figure 3 shows

the artificially generated deformation and the resulting de-
formation found by our algorithm.

VII. CONCLUSIONS

We have developed a spline registration algorithm for
multiple dimensions, analyzed its computational complex-
ity, and evaluated several solutions to the optimization
problem. An important feature of our method is the mul-
tiresolution strategy. We have applied the algorithm to
a practical problem in the biomedical domain.
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Fig. 2. The slices of an ECD SPECT image are shown on the left. One slice of the difference between and after registration of EP
reconstructed Xenon SPECT images for artificially generated deformation is shown on the bottom right. The top right image shows the
corresponding slices from the two EP images before registration.

Original deformation Deformation found

3

n |
Lo
A /d&p}\\ A /@% .

TN AN
///////f%\\\\ /////fﬁ \\\\\\
10+ ///:'// 7f -~ /Y/T \\ 10 ///// ff ~ ﬁ/v ~

Fig. 3. The left image shows a randomly generated deformation which was applied to an ECD SPECT image in the previous figure. The
right image shows the deformation recovered using our algorithm by registering the deformed SPECT image with the original one. We
observe that for this model case, the deformation is very well recovered.
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