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ABSTRACT

Superresolution T2-weighted fetal-brain magnetic-resonance imag-
ing (FBMRI) traditionally relies on the availability of several orthog-
onal low-resolution series of 2-dimensional thick slices (volumes).
In practice, only a few low-resolution volumes are acquired. Thus,
optimization-based image-reconstruction methods require strong
regularization using hand-crafted regularizers (e.g., TV). Yet, due to
in utero fetal motion and the rapidly changing fetal brain anatomy,
the acquisition of the high-resolution images that are required to train
supervised learning methods is difficult. In this paper, we sidestep
this difficulty by providing a proof of concept of a self-supervised
single-volume superresolution framework for T2-weighted FBMRI
(SAIR). We validate SAIR quantitatively in a motion-free simulated
environment. Our results for different noise levels and resolution
ratios suggest that SAIR is comparable to multiple-volume superres-
olution reconstruction methods. We also evaluate SAIR qualitatively
on clinical FBMRI data. The results suggest SAIR could be incor-
porated into current reconstruction pipelines.

Index Terms— Image reconstruction, Image enhancement,
Neural networks.

1. INTRODUCTION

Magnetic resonance imaging (MRI) of the in utero developing brain
is a key complementary imaging tool to ultrasound, due to its proven
ability to visualize the fetal anatomy with excellent soft tissue con-
trast. T2-weighted (T2w) imaging is the tool of choice to depict nor-
mal and pathological maturation in fetal MRI [1, 2]. Unpredictable
fetal motion in the womb is a major challenge and leads to the imper-
ative requirement of fast clinical acquisitions. In practice, ultra fast
multi-slice single-shot sequences are acquired, resulting in several
orthogonal low-resolution (LR) series (also referred to as volumes)
during one session. At 1.5 T, these volumes have a very good in-
plane spatial resolution (∆x = ∆y ≈ 1 mm) while the slice thick-
ness is typically chosen between ∆z = 3 mm and 5 mm in order to
ensure a good signal-to-noise ratio. This results in a resolution ratio
r = ∆z/∆x ∈ [3, 5].

Several methods have been proposed for the superresolution
(SR) reconstruction of fetal T2w imaging [3–12]. These support
fetal-brain explorations and allow for the automated quantitative
study of isotropic high resolution (HR) 3-dimensional (3D) vol-
umes [13]. Most fetal SR algorithms use multiple orthogonal LR
volumes to reconstruct a single isotropic HR volume. Traditional
approaches are based on iterative optimization schemes, which com-
bine motion-estimation and image-reconstruction [3–8] steps. In the
motion-estimation step, each volume is aligned to a single reference
volume using volume-to-volume registration, and each slice within

SAIR Training

x
y

z

XLR

Uz x
y

z

Rθ ||

...
...

Rθ ||

Training targets Training inputs

NN

B̃ Dx +

n

Ux ||

Rθ B̃ Dx +

n

Ux ||

...
...

Rθ B̃ Dx +

n

Ux

Fig. 1. Training procedure for the (SAIR) reconstruction pipeline.
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Fig. 2. Schematic description of the prediction procedure for the
SAIR reconstruction pipeline.

each volume is aligned using slice-to-volume registration. The im-
age enhancement is then formulated as an ill-posed inverse problem
with hand crafted regularizers (e.g., Tikhonov, total-variation, or non
local means). Prior to the SR reconstruction, these methods need to
perform a fetal-brain segmentation and a bias-field correction [14].

Deep-learning SR methods are widely explored in MRI. Despite
this, their application to fetal-brain MRI (FBMRI) is very limited.
Few deep-learning strategies have been proposed within the context
of multiple-volume SR reconstruction of the fetal brain [9, 11, 12].
Even then, they tackle the SR problem only partially, either by pro-
viding an initial step to optimization-based approaches [9,12], or by
improving only the in-plane (but not the trough-plane) spatial reso-
lution [11]. In this paper, we propose a method that uses a single
LR volume and that was designed to obtain a volume with isotropic
resolution.

1.1. Related Work on Single-Volume Superresolution

To the best of our knowledge, only two methods have been pre-
sented for single-volume SR in diffusion and dynamic functional
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Fig. 3. Performance of the SAIR pipeline when applied to data gen-
erated by the simplified MRI model (1) applied to the HR volume
described in Section 3.1. Results are reported for nine noise realiza-
tions in terms of the resolution ratio r.

fetal MRI [15, 16]—but none for T2w imaging. In [15], an auto-
encoder model is proposed to leverage HR diffusion-weighted MRI
images from preterm babies to enhance the spatial resolution of a fe-
tal diffusion MRI acquisition. This approach relies on training data
from preexisting HR datasets, which are hard to obtain and come
from a different population. To avoid the need for HR data, self-
supervised SR approaches like the one we propose use internal in-
formation from the LR image to train the reconstruction procedure.

In fluorescence microscopy, Weigert et al. [17] proposed a SR
reconstruction method where the information along the LR axis (by
convention, z) is learned from the other two HR axes (x and y). The
distortion in the LR axis was modeled mathematically and syntheti-
cally applied along one of the HR axes to construct pairs of samples
to train a network. The resulting network was used to enhance the
resolution along the LR axis. The work by Weigert et al. inspired
our work, which transitions its key ideas to MRI. Our pipeline is
similar to the one independently developed in [18]. Our network,
however, has much fewer parameters and builds on a simpler MRI
model. Furthermore, our quantitative empirical study avoids the in-
verse crime by using a realistic physics-based MR-acquisition sim-
ulator [19]. We also provide a thorough comparison with multiple-
volume SR reconstruction methods, which is critical for FBMRI.
In [16], a method that extends the same concepts to both the spa-
tial and temporal domains is presented for dynamic functional fetal
MRI.

1.2. Contribution

In this paper, we build on [17] to develop a single-volume self-
supervised SR method for structural T2w FBMRI. Such methods can
be of very high practical value in FBMRI. First, they avoid the need
for the harmonization of intensities between the LR series, which
is a major pitfall for quantitative applications with current multiple-
volume approaches. Second, they can have a significant impact on
T2 mapping strategies [20] by significantly reducing the acquisition
time. Currently, these strategies can increase the scanning time by
up to 12 min, in the case of the acquisition of three (or more) or-
thogonal series at six different echo times.

2. SINGLE-ACQUISITION ISOTROPIC-RESOLUTION
RESTORATION

SAIR, our proposed pipeline, is based on a simplified model of the
acquired LR volume XLR with respect to the true volume X. In
particular, we assume that

XLR = DzBX+ n , (1)

where Dz is the linear operator that performs downsampling along
the z axis (by convention, the axial direction of the series) by a factor
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Fig. 4. Left panel: Reconstruction for r = 4 as described in Sec-
tion 4.1.1. The results of b) SAIR reconstruction using a) one single
LR series is compared to a synthetic 3D isotropic high resolution
ground-truth image. The SSIM is reported in the bottom row. Right
panel: Zoom over regions of interest.

of r, B is a convolutional operator that approximates the frequency
response of the MRI scanner (a.k.a. the slice-selection profile, here
chosen as in [7]), and n is an additive white Gaussian noise.

Building on (1), we propose to create a training set based on a
simple upsampling Xup = UzX

LR (e.g., bicubic) of the data vol-
ume along z as the training target, and an artificially degraded vol-
ume using model (1) along x as the training input DxB̃Xup + n,
where B̃ is an axis-permuted version of B (switching the roles of
z and x). If the model represents the distortion caused by the MRI
in z well enough, then a network that would perform well on this
problem should be able to reconstruct a volume with isotropic reso-
lution from the low-resolution volume XLR, up to a permutation in
the x and z axes. Because there is nothing special about the x axis,
any rotation by an angle θ around the z axis of the upsampled vol-
ume RθX

up is equally valid to augment the training dataset. Thus,
we create the training dataset from ntrain rotated volumes for evenly
spaced angles between 0◦ and 180◦. This pipeline is summarized in
Figure 1. There, we see that the training inputs are upsampled in the
x axis, so that the network is only trained to refine the upsampling
operator of choice, Ux. All the results in this paper were obtained
with ntrain = 10 and Uz the bicubic upsampling operator.

At prediction time, we take an ensemble approach, combining
the predictions of the network when applied to npred different rota-
tions of the upsampled volume between 0◦ and 180◦ (see Figure 2).
To combine these predictions, we use the Fourier-burst accumulation
technique [21], summarized by

Xpred = FFT−1

{npred∑
m=1

Wm ⊙ X̂pred
m

}
, (2)

where X̂pred
m is the FFT of Xpred

m = R−θmNN(RθmXup), where
NN( · ) represents the trained neural network. The weighting mask
Wm is computed as

Wm =

∣∣∣X̂pred
m

∣∣∣2∑npred

k=1

∣∣∣X̂pred
k

∣∣∣2 , (3)

which corresponds to p = 2 in the expressions in [21]. All results in
this paper were obtained with npred = 15.

SAIR is a proof-of-concept pipeline in the context of FBMRI.
Model (1) captures the most dominant effects of MR acquisition,
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Fig. 5. Left panel: a) synthetic LR HASTE series simulated in the coronal orientation using FaBiAN for a subject of 30 weeks of gestational
age; b) SAIR reconstruction from that single LR series; c) MIALSRTK reconstruction combining nine orthogonal LR series (MIAL). The
SSIM was computed with respect to d) a synthetic 3D isotropic high resolution ground-truth image. Right panel: Zoom over regions of
interest.
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Fig. 6. Reconstruction performance as a function of the noise level.
Reported for a single reconstruction with MIALSRTK using nine
volumes, and in the form of a boxplot for SAIR for six different
noise realizations.

and Fourier-burst accumulation [21] combines frequency informa-
tion from several independent predictions. Our proposed architec-
ture is a slice-wise (2D) U-Net with 32 convolutional initial chan-
nels, (7 × 7) convolutional kernels, a skip connection, and a single
encoder/decoder step. Due to the use of a U-Net with skip con-
nection in the fashion of [22], the network is trained to correct the
artifacts in the input image. The architecture is very shallow, which
is an advantage in the self-supervised context, in which the network
is to be trained for each volume.

3. DATA SETS AND EVALUATION

3.1. Synthetic Low-Resolution Series

Synthetic, yet realistic T2w MR images of the fetal brain at different
gestational ages (GA) were derived from a normative spatiotemporal
MRI atlas of the fetal brain [23] through a simulated fetal-brain MR
acquisition of a numerical phantom (FaBiAN) [19]. In this highly
flexible and controlled environment, we have reproduced the clin-
ical MR protocol for the half-Fourier acquisition single-shot turbo
spin echo sequence (HASTE, Siemens Healthineers) performed at
our local hospital (at 1.5 T: TR/TE, 1200 ms/90 ms; flip angle,
90◦; echo train length, 224; echo spacing, 4.08 ms; field-of-view,
(360× 360) mm2; voxel size, (1.1× 1.1× 3.0) mm3; inter-slice
gap, 10%) [24, 25].

For a subject of 30 weeks of GA, nine orthogonal series (three in
each orientation, with a shift of the field-of-view of 1.6 mm between
each series) were simulated without motion. Random isotropic com-
plex Gaussian noise (with mean 0 and standard deviation σ0 = 0.15)
was added to the k-space data to qualitatively match the noise char-
acteristics of clinical acquisitions. Corresponding brain masks were
automatically generated along with the 2D LR series. Additional
data were simulated with two extra noise levels (σ = 0.07 and 0.30).
Six independent realizations of the same LR series were generated
for each noise level.

A 3D HR isotropic HASTE image of the fetal brain was simu-
lated for each subject without noise or motion to serve as a reference
for the quantitative evaluation of the corresponding SR reconstruc-
tions. For comparison, a multiple-volume SR reconstruction was
generated with MIALSRTK [7, 26] using the nine simulated orthog-
onal LR series.

3.2. Clinical Data

Clinical MR images at 1.5 T (MAGNETOM Aera, Siemens Health-
care, Erlangen, Germany) were retrospectively selected for two
normally-developing subjects of 28 and 33 weeks of GA. For com-
parison purposes, both subjects were SR-reconstructed with the
MIALSRTK pipeline [7, 26] using all the LR series available for
each fetus (three without relevant motion for the younger fetus and
eight with little-to-moderate motion for the older fetus). The voxel
size was (1.125× 1.125× 3.3) mm3.

4. EMPIRICAL RESULTS

4.1. Results on Simulated Data

We first analyze the performance of SAIR quantitatively on synthetic
data. Because the ground truth (GT) HR images are available in
this scenario, we evaluate reconstructions by computing the mean-
squared error (MSE) and the mean structural similarity index (SSIM)
over the brain area of every volume, as indicated by the correspond-
ing GT mask.
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4.1.1. Simplified MRI Model

We start by exploring the performance of SAIR with respect to the
resolution ratio r = ∆z/∆x = ∆z/∆y. For this experiment, we
use the simplified model (1) to simulate the MRI acquisitions of the
subject described in Section 3.1. In Figure 4, we see an example of
the resulting LR volume, its reconstruction by SAIR, and the GT HR
volume for r = 4. Given the coarse resolution of the original data,
SAIR does an impressive job at recovering many of the lost details
and at improving the SSIM (MSE) from 0.720 (−19.05 dB, respec-
tively) in the LR volume to 0.907 (−22.57 dB, respectively) in the
reconstructed volume. In Figure 3, we report the performance of
SAIR as a function of r. As expected, it decreases when r increases,
but relatively high SSIMs (≈ 0.8) are still achieved for the extreme
case r = 6.

4.1.2. Realistic Synthetic Data

We proceed by evaluating the performance of SAIR on the synthetic
T2w MR images described in Section 3.1, compared to that of the
MIALSRTK multiple-volume reconstruction with 9 different vol-
umes. In Figure 5, a reconstruction obtained from SAIR (which uses
a single volume) is compared to a reconstruction obtained from MI-
ALSRTK (which uses 9 different volumes). There, we observe that
1) the reconstructions are of similar perceptual quality, with SAIR
seeming advantageous in the overall view and MIALSRTK domi-
nating in the zoomed view, and that 2) the obtained SSIMs are sim-
ilar (0.818 for SAIR and 0.814 for MIALSRTK). Additionally, the
MSEs are −22.35 dB for SAIR and −21.18 dB for MIALSRTK.
However, we suggest here that MSE is not a reliable metric to evalu-
ate the quality of these reconstructions, as it does not seem to match
the perceived quality.

We further analyzed both how SAIR and MIALSRTK were af-
fected by the level of noise. In Figure 6, we show the performance
of both reconstruction methods for the three noise levels specified
in Section 3.1. We observe that SAIR is more sensitive to noise.
This reduced robustness was to be expected because SAIR uses only
one volume, as opposed to the 9 volumes used by MIALSRTK. In-
deed, the trend in the evolution of the SSIM between MIALSRTK
and SAIR is similar, with the slopes being much more pronounced in
the case of SAIR. We verify here that MSE is not a reliable metric to
evaluate the quality of the reconstruction, as shown by the discrep-
ancy between MSE and SSIM changes for MIALSRTK.

4.2. Results on Clinical Data

Finally, we present the SR reconstructions using SAIR and MIAL-
SRTK on two real clinical LR volumes, one without motion (Fig-
ure 7) and the other one with little amplitude of fetal movements
(Figure 8). Overall, both methods provide very similar results. Al-
though the reconstruction from one single volume with SAIR looks
a little blurrier than the one combining multiple volumes with MI-
ALSRTK, the quality of the reconstruction is remarkable, especially
when considering that, as opposed to MIALSRTK, SAIR does not
include any mechanism to compensate for inter-slice motion.

5. DISCUSSION

In this work, we present the first study of a single-volume self-
supervised superresolution method for the reconstruction of T2-
weighted magnetic-resonance images (MRI) of the fetal brain
compared to more conventional reconstruction techniques such as
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Fig. 7. Reconstruction of a clinical case without motion.
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Fig. 8. Reconstruction of a clinical case with little motion artefacts.

MIALSRTK that combine multiple orthogonal low-resolution vol-
umes. We exemplify the accuracy of our proposed single-acquisition
isotropic resolution method on synthetic data without motion. Such
simulations rely on a numerical phantom and are highly valuable
to evaluate the proposed method. They provide not only more re-
alistic LR images than the simplified MRI model commonly used,
but also high-resolution isotropic ground-truth images. As proof
of concept, we also show the applicability of SAIR on real clinical
acquisitions with little amplitude of fetal movements. The resulting
single-volume superresolution method will be very useful to replace
the interpolation methods currently used to upsample the reference
anatomy needed in the motion-estimation step. In addition, the re-
construction of a high-resolution volume of the fetal brain from one
single series would be of paramount interest in the perspective of a
clinical translation to minimize the acquisition time in this cohort
of sensitive subjects. Further development will focus on integrating
SAIR with motion-estimation methods, for instance, based on an
age-matched HR simulated volume.
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