Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Motion Detection
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Cardiac Ultrasound Motion Detection by Elastic Registration Exploiting Temporal Coherence

M.J. Ledesma-Carbayo, J. Kybic, M. Sühling, P. Hunziker, M. Desco, A. Santos, M. Unser

Proceedings of the First IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI'02), Washington DC, USA, July 7-10, 2002, vol. II, pp. 585-588.


We propose a new global registration method for estimating the cardiac displacement field in 2D sequences of ultrasound images of the heart. The basic idea is to select a reference frame (e.g., the first image of a cycle) and to map each image in the sequence to it using elastic deformation. What makes our method specific is the use of a semi-local parametric model of the deformation (spatio-temporal spline), and the reformulation of the registration task as a global spatio-temporal optimization problem. The scale of the spline model controls the smoothness of the displacement field. Our algorithm uses a multiresolution optimization strategy for higher speed and robustness.

We validated the accuracy of our algorithm by applying it to a synthetic sequence; this one heart-cycle test sequence was generated by deforming a reference frame according to a realistic motion model and by adding random noise to it. Finally, we present results on real data from normal and pathological subjects to illustrate the clinical applicability of our method.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/ledesma0201.html,
AUTHOR="Ledesma-Carbayo, M.J. and Kybic, J. and S{\"{u}}hling, M. and
	Hunziker, P. and Desco, M. and Santos, A. and Unser, M.",
TITLE="Cardiac Ultrasound Motion Detection by Elastic Registration
	Exploiting Temporal Coherence",
BOOKTITLE="Proceedings of the First {IEEE} International Symposium on
	Biomedical Imaging: {M}acro to Nano ({ISBI'02})",
YEAR="2002",
editor="",
volume="{II}",
series="",
pages="585--588",
address="Washington DC, USA",
month="July 7-10,",
organization="",
publisher="",
note="")

© 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved