Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Corpus Callosum Recognition
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Automatic Recognition of Corpus Callosum from Sagittal Brain MR Images

C. Lee, M. Unser, T.A. Ketter

Proceedings of the SPIE Conference on Applications of Digital Image Processing XVIII, San Diego CA, USA, July 9-14, 1995, vol. 2564, pp. 528-534.


We propose a new method to find the corpus callosum from sagittal brain MR images automatically. First, we calculate the statistical characteristics of the corpus callosum and obtain shape information. The recognition algorithm consists of two stages: extracting regions satisfying the statistical characteristics (gray level distributions) of the corpus callosum, and finding a region matching the shape information. An innovative feature of the algorithm is that we adaptively relax the statistical requirement until we find a region matching the shape information. In order to match the shape information, we propose a new directed window region growing algorithm instead of using conventional contour matching. Experiments show promising results.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/lee9501.html,
AUTHOR="Lee, C. and Unser, M. and Ketter, T.A.",
TITLE="Automatic Recognition of Corpus Callosum from Sagittal Brain
	{MR} Images",
BOOKTITLE="Proceedings of the {SPIE} Conference on Applications of
	Digital Image Processing {XVIII}",
YEAR="1995",
editor="",
volume="2564",
series="",
pages="528--534",
address="San Diego CA, USA",
month="July 9-14,",
organization="",
publisher="",
note="")

© 1995 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved