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Abstract—We present nonquadratic Hessian-based regulariza-
tion methods that can be effectively used for image restoration
problems in a variational framework. Motivated by the great
success of the total-variation (TV) functional, we extend it to
also include second-order differential operators. Specifically, we
derive second-order regularizers that involve matrix norms of the
Hessian operator. The definition of these functionals is based on
an alternative interpretation of TV that relies on mixed norms of
directional derivatives. We show that the resulting regularizers
retain some of the most favorable properties of TV, i.e., con-
vexity, homogeneity, rotation, and translation invariance, while
dealing effectively with the staircase effect. We further develop
an efficient minimization scheme for the corresponding objective
functions. The proposed algorithm is of the iteratively reweighted
least-square type and results from a majorization—-minimization
approach. It relies on a problem-specific preconditioned conjugate
gradient method, which makes the overall minimization scheme
very attractive since it can be applied effectively to large images in
a reasonable computational time. We validate the overall proposed
regularization framework through deblurring experiments under
additive Gaussian noise on standard and biomedical images.

Index Terms—Biomedical imaging, Frobenius norm, Hessian
matrix, image deblurring, linear inverse problems, majoriza-
tion—minimization (MM) algorithms, spectral norm.

I. INTRODUCTION

URING image acquisition, artifacts are mainly caused by
blurring, which is linked to imaging processes such as
diffraction or aberrations, and by noise, which is intrinsic to the
detection process. To alleviate these effects, image restoration
can serve as a desirable preprocessing technique. In this paper,
we are dealing with regularization-based restoration methods
where the regularizer consists of second-order derivative terms.
The choice of the regularizer significantly affects the quality
of the restored image. Several regularization approaches have
already been proposed for image restoration in a variational
framework, e.g., the total-variation (TV) seminorm that cur-
rently provides state-of-the-art results. TV regularization was
initially introduced for denoising [1] and has been effectively
applied to other inverse problems as well, such as image restora-
tion [2]-[4], inpainting [5], and zooming [6]. The success and
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widespread use of the TV functional in the past two decades can
be mainly attributed to its ability to produce well-preserved and
sharp edges. Moreover, its convexity permits the design of effi-
cient algorithms [7].

While TV regularization is extremely popular in a variety of
applications, it also gives rise to some undesired effects. In par-
ticular, it leads to the well-known staircase effect when applied
to signals that are not necessarily piecewise constant [8]—[10].
Indeed, TV favors piecewise-vanishing first-order derivatives
and thus yields solutions belonging to the class of piecewise-
constant functions. This tendency can be highly undesirable,
particularly in applications such as biomedical imaging where
image interpretation can be severely obstructed. The main chal-
lenge is thus to deal with the staircase effect while preserving
image sharpness and convexity.

To attenuate the staircase effect, there is a growing interest in
the literature for replacing TV by the .1 norm of some higher
order differential operator. The motivation behind such attempts
is to restore potentially a wider class of images, which com-
prise more than merely piecewise-constant regions. The ma-
jority of these regularizers involve second-order differential op-
erators because piecewise-vanishing second-order derivatives
lead to piecewise-linear solutions that better fit smooth inten-
sity changes.

Second-order regularization schemes that have been con-
sidered so far in the literature were mainly targeted to the
problem of image denoising. In this case, the proposed varia-
tional methods are either combining a second-order regularizer
with the TV seminorm [8], [9], [11], [12] or employing a
second-order regularizer in a standalone way [10], [13]-[15].
The regularizers that have already been used on this problem
include the L; norm of the Laplacian operator [8], [13], [15]

Ri(f) = /|A.f(x>|dx (1)
Q

where @ C R%, Af(X) = feu(X) + fyy(x) with fi;(x) =
(0%/9i07) f(x), the modified Laplacian [14], [15]

Ru(f) = /'|.fm<x>|+\fyy<x>|dx @
Q

the Frobenius norm of the Hessian [9], [14], [15]
Re(f) = [ R0+ 22,60 - ff0ax @)
Q

and the affine TV functional [10]
Ralh)= [ (I2G0+ 2,00+ /7004 13, ) .
Q
“)
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For image denoising, these regularizers have been shown
either to perform better than TV or to complement it favorably.
This motivates us to investigate higher order regularization
methods that constitute valid extensions of TV and that can
be applied effectively to the more general problem of image
restoration/deblurring.

In this paper, our main contributions are twofold. First, we in-
troduce two second-order extensions of the TV functional. Their
definition is based on an alternative interpretation of TV that
we derive and that relies on mixed norms of the first directional
derivative. The obtained second-order functionals turn out to
be well-suited to the task of image restoration, particularly for
biomedical images. In particular, we prove that they preserve
some of the most favorable properties of TV, i.e., convexity,
homogeneity, rotation, and translation invariance. Second, we
propose a unifying computational framework for image restora-
tion based on second-order regularization. More specifically, we
develop an iteratively reweighted least-squares-type (IRLS) al-
gorithm that is derived following a majorization—minimization
(MM) approach and is applicable to all the second-order regular-
izers that we have referred to. To further speed up our minimiza-
tion scheme, we also devise a problem-specific preconditioned
conjugate gradient (CG) algorithm. We show experimentally
that one can significantly accelerate the optimization task, as
compared with the standard CG algorithm or with other com-
monly used preconditioning schemes. Finally, we provide sys-
tematic comparisons between the studied second-order schemes
and TV, which currently provides state-of-the-art results.

The rest of this paper is organized as follows. In Section 11, we
present the mathematical formulation of the image-deblurring
problem and discuss higher order regularization schemes. Con-
sidering first the 1-D setting in Section II-B, we then introduce
second-order extensions of TV for the 2-D case in Section II-C.
In Section III, we obtain tight quadratic upper bounds for the
second-order regularizers and describe our minimization algo-
rithm. Then, in Section IV, we assess the performance of our
approach on two different data sets consisting of standard and
biomedical images. We finally conclude this paper in Section V.

II. HIGHER ORDER REGULARIZATION FOR INVERSE PROBLEMS

A. Problem Formulation

Image deblurring belongs to the general family of inverse
problems and amounts to estimating an image f given measure-
ments y. The most commonly used image observation model
involves linear measurements and can be expressed as

y=Af +w (%)

where A is a linear blur operator and w is the unknown noise
affecting the measurements. The recovery of f from measure-
ments ¥ is an ill-posed problem [16], due to the presence of
the noise and to the fact that the blurring operator .4 is usually
ill-conditioned or, even, noninvertible. In general, the ill-posed
nature of the problem implies that there are too many ways one
can obtain an approximate solution. A reasonable strategy is
to reformulate the image-deblurring problem by taking into ac-
count the image formation and acquisition process as well as any
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available prior information about the properties of the image to
be restored.

The most common approach for restoring signal f is to form
an objective function, which quantifies the quality of a given
estimate and has the following form:

](f) = Jdata(f) + TR(f) (6)

The first term is known as data fidelity and measures the con-
sistency between the estimation and the measurements, whereas
the second one is the regularization term, designed to penalize
solutions that deviate significantly from the expected properties
of the image to be restored. The regularization parameter 7 > 0
balances the contribution of the two terms. Image restoration
can then be cast as the minimization of (6).

B. One-Dimensional Regularization

Given 1-D signals f of finite spatial support £2 C R with ap-
propriate continuity properties, the general form of regularizers
based on L, norms of derivatives can be expressed as

R(fip.q) = / DY) de = |DPAIE ()

Q

where D? = 9?7 /8P is the pth-order derivative and ¢ de-
termines how “irregularities” are penalized. It is common to
choose ¢ > 1 to ensure the convexity of the regularizer.

In this paper, we only deal with cases ¢ = 1, 2, which are the
most commonly used in practice and which correspond to the
L1 and Ly norms of the pth-order derivative of f. For ¢ = 2,
the corresponding regularizer is known as Tikhonov regular-
ization [16] and has been widely used in the past because of
its simple closed-form solution. However, in the past decade,
there has been an increasing interest in using the L; norm. The
main reason is that L; -norm regularization has been found to be
more appropriate and to lead to improved results for the problem
of image restoration [1]. Its use still ensures convexity of the
problem, implying that the computation of an optimal solution
can be efficiently performed [7], even if no closed-form solu-
tion exists. The underlying philosophy in prefering L;-based
over L,-based regularization is that L; norms are less sensitive
to outliers and are therefore associated with better edge recon-
struction capabilities. Indeed, edges correspond to high local
magnitude values of |D? f|, which are less penalized a priori
than with norms of higher order.

To illustrate this issue, we consider a denoising problem (i.e.,
A matches the identity operator Z) for a synthetic signal con-
sisting of piecewise-constant, piecewise-linear, and piecewise-
parabolic regions. The results are shown in Fig. 1 and are ob-
tained using regularizers of norm ¢ = 1,2 for differential op-
erators of order p = 1, 2. Irrespectively of order p, the re-
sults clearly show that the use of the Ly norm is more appro-
priate since ¢ = 1 better restores the abrupt transitions of the
signal by creating less oscillations. Meanwhile, we observe that
the first-order solution (TV) restores the piecewise-constant re-
gions of the signal properly but creates staircase artifacts else-
where. However, for ¢ = 1 and p = 2, smoother transitions
are more accurately restored. These results motivate the use of
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Fig. 1. Denoising a synthetic signal consisting of piecewise-constant, piece-
wise-linear, and piecewise-parabolic regions. Intensity profile of (a) original
signal, (b) signal degraded by Gaussian noise of standard deviatione = 0.1, (¢)
first-order L. -norm solution, (d) second-order L3 -norm solution, (e) first-order
L1 -norm solution, and (f) second-order L; -norm solution.

higher order operators in two dimensions because, as in the 1-D
case, natural images contain regions that deviate from a piece-
wise-constant model.

C. Two-Dimensional Regularization

The standard extension of TV to two dimensions, assuming
that image f is continuously differentiable, is

TV(f) = / IV 70l dx. ®)
Q

It involves the image gradient V f, where ||V f||2 is its Eu-
clidean norm and where @ C RZ. This regularizer is closely
linked to its 1-D counterpart R(f;1,1). Indeed, the 2-D TV
functional can be equivalently written as

1
TV(f) = @/ D5 £ 1, 0.2, 9% ©)
Q

where h{q) = || cos(f)||1,[0.2x) and Dy is the first directional
derivative along angle 4, definedas D} f = (Vf,up) = Vf-uy
with up = (cos 6, sin #). Therefore, according to (9), TV can be
interpreted as a mixed L; — L, norm where the Ly norm acts on
the image domain, whereas the L, norm acts along the angular
orientation of the directional derivative. This particular expres-

sion also highlights the properties of convexity, homogeneity!,
rotation, and translation invariance of the TV functional.

In two dimensions, a natural way to compute second deriva-
tives is to use the Hessian operator

_ (e Ty

m= (5 T o
While the use of second derivatives for constructing a regular-
izer is straightforward in the 1-D setting, there are several pos-
sible choices in 2-D. In the literature, several attempts at the
definition of second-order regularizers have been reported, as
mentioned in Section 1. They typically lead to (1) —(4), where
it has been required upfront that the regularizers satisfy certain
properties such as rotation invariance, convexity, or both.

In this paper, we want to derive second-order regularizers that
promote invariances and, at the same time, constitute valid ex-
tensions of TV, in the sense that they extend definition (9) to the
second-order case. To do so, we increase the order of differen-
tiation using second-order bidirectional derivatives and define
our second-order regularizers accordingly. In this case, how-
ever, the resulting functional is not the same for different choices
of L, norms. In this paper, we are thus considering the mixed
norms I,y — L, and L; — Lo, which result in the definitions

Re() = [ID3at], pppedx (D)
Q
, 1 ,
Rr(f)=— / [R2ZyAE 3] Ft—" (12)
Q

where D; ¢ 1s the second directional derivative along the
directions given by angles # and ¢, defined as D32 of(x) =
Dy(DSf) = ug Hy(x)vy, with vy = (cos ¢, sin ¢). For alter-
native higher order extensions of TV based on tensor algebra,
we refer the interested reader to two recent works in [17] and
[18].

In the following two lemmas, we prove that the integrands of
(11) and (12) correspond to the spectral and Frobenius norms of
the Hessian, respectively.

Lemma 1: The L, norm of the second directional derivative
of f at coordinates x is equal to the spectral norm of the Hessian
matrix || H f(x)]|2.

Proof: The spectral norm of a matrix B is defined as [19,
Ch. 5]

Bl = max max |y?Bx|
llxllz=1lyll==1

where # denotes the Hermitian transpose. Based on this defini-
tion, we have

HDg,d)f(x)HL%[O,Qﬂ'}z

x| D215

B, "

= max |u9T'Hf(x)v¢|
0,9

= max max |[ul Hy(x)v|
alla=1lv]l2=1

= H; &), - (13)

"Homogeneity of function f is considered in the sense that f presents a mul-
tiplicative scaling behavior, i.e., f(ax) = o f(x).
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TABLE I
DEFINITION OF DIFFERENTIAL OPERATORS

Scalar Operators Vectorial Operators
A= 0o +0yy || V= (0, 9y)
A =03y —Oyy || U = (Ozz — Oyy, 20zy)
I = 20,y V = (22, V302y, Oy )

The Hessian spectral norm can be alternatively defined as

1Pl = mag (1A 7)) (14)

where A; f(x) are the eigenvalues of the Hessian matrix of f at
coordinates x. These two eigenvalues are expressed as

+/(Af(x)° + (TF(x))?
2

Araf(x) =

(15)

where the associated differential operators are defined in Table I.
The eigenvalues of the Hessian operator are called principal di-
rections. They are the directions of pure curvature, and are in-
variant to the rotation of the system of coordinates.

Lemma 2: The Lo norm of the second directional derivative
of f at coordinates x is proportional to the Frobenius norm of
the Hessian matrix || (x)|| 7.

Proof: The second directional derivative of f can be
written as a function of the Hessian eigenvalues. Specifically,
since the Hessian matrix is symmetric, we can use the spectral
decomposition theorem and express the second directional
derivative as

Dj . f(x) =uf QA;(x)Q" v,
=(Q"u) A (x)(Q"vy) (16)

where Ay is a diagonal matrix with the Hessian eigenvalues
and Q is a 2 x 2 orthogonal matrix with the eigenvectors in
its columns. We can always choose Q7 to be of the form

a —b
o =[; 7]

where ¢ +b? = 1. It is then a rotation matrix by definition. We
can therefore write (16) as

D3,¢f(x) =1 f(x) sin(0") sin(¢') + A2 f(x) cos(8”) cos(¢)
(17)

where 6’ and ¢’ correspond to the rotated versions of # and ¢,
respectively. Based on (17), we then obtain

27 27 1/2
[HEST - / / D3, £(x)[? dbdg
= /72 N f(x) + A ()
=7 ), (18)

|
Definitions (11) and (12) lead to convex regularizers since
they arise from the integration of the norm of a linear operator
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[7, Ch. 3]. In addition, they are also rotation invariant, homoge-
neous, and translation invariant. The rotation-invariance prop-
erty becomes explicit when considering that the Hessian matrix
norms are fully determined by the eigenvalues. The last two
properties are induced by the connection between the regular-
izers and the second directional derivative. The resulting regu-
larizers are therefore suitable extensions of TV for the second-
order case as they retain invariances while following the same
principles. It is worthwhile to note that the Hessian Frobenius
norm has been introduced as a regularization model in [9], [14],
and [15] for image denoising. Meanwhile, the connection we es-
tablish between the Frobenius norm and the Lo norm of Dg_’ " I
justifies this regularizer as a valid extension of TV.

We now focus on the interpretation of the spectral-norm reg-
ularizer, which does not appear to have been used before for
image-processing applications. Using the following identity:

max (ja + A, Ja — B) = o] + 8, V520
and combining it with (11), (13), and (15), we further expand
the spectral-norm regularizer in terms of 2-D second-order dif-
ferential operators, which yields

Rs(h =5 [(Af1+[UfGll)ax (19)

Q

where the vectorial operator ¢{ is defined in Table I. This reg-
ularization term can thus be seen as an equally weighted com-
pound regularizer, which is a linear combination of two distinct
regularization terms with equal weights, whose first term corre-
sponds to the Ly -norm Laplacian.

To demonstrate the performance of the spectral-norm regular-
izer, we present a restoration experiment on a synthetic image
consisting of both piecewise-constant and piecewise-linear re-
gions. In this example, the image is degraded by Gaussian noise
while the blurring operator is, similar to the 1-D case, equal to
the identity, which allows us to better evaluate the regularization
performance. The results for both the TV and the spectral-norm
regularizer are depicted in Fig. 2. As expected, TV restoration
preserves sharp edges well at the cost of introducing pronounced
staircase artifacts in smooth regions. On the other hand, the Hes-
sian spectral norm keeps a better balance between restoration of
piecewise-smooth regions and edge preservation.

Among all possible second-order regularizers, those that
seem to be of more interest are those that also satisfy the
properties of convexity, homogeneity, translation, and rotation
invariance. The Li-norm Laplacian (1) can be easily verified
to satisfy these properties. In particular, convexity ensures that
one can find an efficient solution of the problem, whereas the
other three properties imply that the solution will remain stable
under intensity transformations as well as shifts and rotations of
the observed image. On the other hand, the modified Laplacian
(2) and affine TV (4) are not rotation invariant. This stems from
the fact that the latter two regularizers cannot be fully deter-
mined by the Hessian eigenvalues. Since a preferential choice
of a coordinate system on the model is not desirable for the
task of image restoration, we only consider rotation-invariant
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Fig. 2. Denoising of a synthetic image. Intensity profile of (a) original image
solution, and (d) Spectral-norm solution.

regularizers in the rest of this paper. Notwithstanding that, the
minimization method we are proposing in the following section
is well suited to the rotation-variant regularizers as well.

III. MINIMIZATION OF THE OBJECTIVE FUNCTION

A. Discrete Problem Formulation

Let us now consider the discrete formulation? of (6). In our
analysis, we assume that Gaussian noise affects the measure-
ments. Thus, a quadratic data term is appropriate, and the ob-
jective function is

J(f)

(20)

= lly — AR+ 7R()
where A € RY*¥ s the convolution matrix describing the
blurring operation, and y and f € RY are N -dimensional vec-
tors that contain the rasterized, observed, and unknown images,
respectively, with V' = m X n. Depending on the assumed
boundary conditions [16], matrix A can be block circulant with
circulant blocks (periodic boundary conditions), block Toeplitz
with Toeplitz blocks (zero boundary conditions), or a sum
of four different kinds of block matrices (reflexive boundary
conditions). To discretize the differential operators described
in Section I, we assume periodic boundary conditions for the
images and use forward finite differences for approximating
second-order derivatives [20, Chap. 4] so that

£oult, ) =13, j] — 2f[i + 1, ] + £ + 2, j].
fyy[iJ] :f[iaﬂ - 2f['£7j + 1] + f[i:j + 2]

(21)
Based on this convention, all discretized operators are real-
ized as block-circulant convolution matrices.
B. MM via Quadratic Upper Bounds

In the MM framework [21], an iterative algorithm for solving
the minimization problem

£ = arg min J(f) (22)
£
takes the form
£+ = arg min ¢} (f; f(t)) (23)
£

2In the sequel, boldface symbols indicate matrices and vectors, in reference
to the discretization of the problem.

987

00

(©) (d)

, (b) degraded image by a Gaussian noise of standard deviation & = 20, (¢) TV

where Q(f; £®)) is the majorizer of function J(f) at a fixed
point ) satisfying the following two conditions:

O (f;f(t)) > J(f),

Q (f(t);f(t)) -, <f(t)> )

Instead of minimizing the actual function .J(f), we first
upper-bound it by a suitable majorizer Q(f;f*)) and then
minimize this majorizing function to produce the next iterate
£0+1) Given the properties of the majorizer in (24), iteratively
minimizing Q(-; £(*)) also decreases the objective function .J(-)
[21].

To develop an MM-based algorithm, we derive appropriate
quadratic majorizers Qg(f;f’) of the studied second-order
penalty functions I2(f). Since the data fidelity term Jya4,(f) in
(20) is quadratic, expression Q(f; ') = Jya5a(f) + Qr(f; ') is
itself a quadratic majorizer of the complete objective function
J(f). This implies that the minimization of the resulting ma-
jorizer amounts to solving a system of linear equations, a task
for which there are excellent methods available in the literature.

Defining the #; norm ofavector fieldu = (uj,uy...,uy) €
RYE as [July 2<icn [wil, where [u;]
Ci<jcrn v j)l/ 2, we rewrite the three regularizers of
interest defined in (1), (3), and (19) in their discrete form as

N

Ry(f) =||Af]l: = [(Af);]

=1

(24a)

(24b)

(25)
Rp(f) =V

~ 2y Janr @ eo)
=1

1
Rs(f) = 5 (|Afl[ + [[Uf]]1)

1 - A f£)2 2
=, (Z (AB)i| + 1/ (AD? + (rf») e

where (-); corresponds to the ith element of the corresponding
matrix—vector product. Next, we consider the two inequalities

holding for a general function g(-) : R — R
@)l | g(@)?
glo)| < —==+ . Ya,Yy:g(y)#0 28a)
el S T ()# (
9y) , gz
g(z) < + ;. Voig(a)>0,¥y:g(y) =0
2 2/g(@)

(28b)
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with equality if and only if g() = g¢(y). Using (28a) and the
fact that the majorization relation is closed under the formation
of sums and nonnegative products [22], we show that the func-
tion Qr,(f; ")) defined as

O (f;f(t)) - % HAf@) (29)

N
Z | Af<t>

is a majorizer of Ry (f) at the fixed point £(*). Similarly, (28b)
implies that functions Q; (f; £*)) and Qp(f; £*)) defined as

(0 = Llgpo| 4 Ly~ [ADF+ @07
“ (f’f) 2HUf 1+2;\/(Af<t>)f+(rf(t>)j
(30)
0 (18) = |ve°], -
N~ [(AD? 4 An? 4 ()]
= (AR9)] + (A£0)] + (0£0)]
(31)

are majorizers of ||Uf||y and Rp(f), respectively, at the same
fixed point £ @, By combining (29) and (30), we also obtain a
valid majorizer for the spectral-norm regularizer Rs(f) that is
expressed as

@s (15) =5 (@ (£19) + Qv (1))
e~ AR+ T
@ww) (re0);
1en  (Af)?
+ 1 2 ‘ Af(t)) | + const (32)

where the constant in (32) is independent of f but depends only
upon the fixed point f*). We can now rewrite the majorizers
(29), (31), and (32) in the more compact form3 as follows:

O (f f<f>) fT (MTW“)M) f+const.  (33)
where for the case of the Laplacian regularizer M = A and
wW® = Wg) is a diagonal matrix whose diagonal elements
are defined in (35a). For the spectral- and Frobenius-norm reg-
ularizers, M = [A”, A" T7|T is a 3N x N matrix, and W
is the block-diagonal 3N x 3N matrix

w0 0
) — ®)
wh=1 90 w{® o
0 0o w

(34

with V x N diagonal blocks Wi and Wét) . For the spectral-
norm regularizer, it holds that Wlt) = W(Lt) and Wgt) = WS) ,
3For the modified Laplacian and the affine TV regularizer, we can obtain a

quadratic majorizer in exactly the same way, where we use inequality (28a) for
the former and inequality (28b) for the latter.
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whereas for the Frobenius one, W§t) = Wgt) = W(f) Their
diagonal elements are defined accordingly as
MY _ 1 L _
(WL ) = STEE ] 1...N (352)
1
(Wg) ) = _ (35b)
i 2\/(Af(t))i +(TfW);
(W) = V2 . (350)
i J(aE0)? 4 (AE®)” 4 (0£0))

Using (33), we can now write a quadratic majorizer for the
complete objective function as

Q (£:£9) = Jlly — AfJ + 70u (£:£)
= %f:r (ATA n TMTW(t)M> £

— 27 ATy + const. (36)

where the constant in (36) does not depend on f and is thus
irrelevant to the optimization task.

Having the total majorizer at hand, we readily proceed with
the MM scheme. Since Q(f; f(V)) is a quadratic function of f,
its minimum with respect to f corresponds to the solution of the
linear system of equations

(ATA + TMTW(t)M) FOHD) — ATy

~

(37

s

Obtaining £(*+1) directly from (37) can be computationally
expensive since it demands the inversion of a very large ma-
trix S® . For this reason, a common practice is to solve itera-
tively the problem by employing the CG algorithm [23]. The
CG algorithm is a very powerful method in terms of computa-
tional cost and memory management since it relies on simple
matrix—vector products and does not require the inversion or
storage of the matrix S(). In fact, the exact solution of (37) is
not required since we can still solve (22) by using the weaker
condition of decreasing majorizer Q(f;f )} in each iteration,
instead of minimizing it. Therefore, in each external iteration, it
suffices to run only a few CG iterations. The resulting method
then falls into the category of generalized MM algorithms.

C. PCG Method

We use a preconditioned CG (PCG) method to improve the
condition number of S and to achieve a significant decrease
in the majorization function within fewer internal iterations. We
devise our preconditioner P as the best circulant approximation
of system S in the sense of [24] and [25]. Specifically, we
define

P = arg min|[S® — XHF (38)

Xec
where || - ||F is the Frobenius norm and C denotes the class
of circulant matrices. Since the Frobenius norm of a matrix is
unitarily invariant [19], we equivalently have

P = arg min [FSFY — FXFHHF (39)

Xel
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where F' denotes the normalized forward discrete Fourier trans-
form (DFT) matrix. Given that X is diagonalized by the DFT, let
us consider the diagonal matrix X’ = FXF# that is associated
to the solution X. Then, we write the best X’ corresponding to
P as

P’ = argmin HFS(t)FH -X’
X'eD

(40)
F

where D denotes the class of diagonal matrices. The relation
between X and X’ implies that the solution can be written as

P = FIP'F. 41)

The solution of the constrained minimization problem in (40)

in the DFT domain is simply the projection Pp of FSWFH

onto the space of diagonal matrices, which, when combined

with (41), yields

P = Fip, (FS@FH) F. (42)

Given the structure of S, our preconditioner satisfies the

properties of symmetry and positive definiteness, as required

for the CG method [23]. We then use left-right preconditioning,
resulting in the modified system as follows:

g g(t+1) — y' (43)
where
S —p-i8p-3 (44)
y =P ATy, (45)
Accordingly, solution f**1) is obtained as
FUHD) — poap/(tD), (46)

The specified form of (42) can be seen as a DFT counterpart of
Jacobi preconditioning?* . By linearity, and from (37) and (42),
the circulant preconditioner P is finally determined as

P=ATA+7> weM{M, (47)
k

where each scalar wy, is the average of the diagonal terms of
the corresponding matrix W,(:) and M, refers to the kth matrix
component of the block matrix M.

We compare the performance of our circulant method to that
of diagonal preconditioning and standard CG. To do so, we
consider averaged results on 1000 deblurring experiments in-
volving 64 x 64 image patches, which are small enough to ob-
tain closed-form solutions by direct matrix inversion. Specif-
ically, we are minimizing the first quadratic upper bounds of
the associated convex objective functions by solving the cor-
responding linear problems. The performance of the employed
methods is then measured in terms of MSE with respect to the
closed-form solutions, as a function of the number of iterations.

“In case that we are assuming reflexive boundary conditions and that the blur-
ring matrix A is symmetric, we can still use the same preconditioner with the
only difference being that I now corresponds to the normalized forward Dis-
crete Cosine Transform matrix.

- ==Standard CG
=+='Diagonal PCG
——Circulant PCG

S

w —100f

7]

=

0 50 100 150 200

Number of iterations

Fig. 3. Comparisons of the convergence rates for the standard CG method
versus its diagonal and circulant preconditioned versions. The presented results
refer to the average MSE evolution (per iteration) obtained for several instances
of a large-scale linear problem.

TABLE II
COMPUTATIONAL PERFORMANCE OF CG VERSUS DIAGONAL AND CIRCULANT
PCG VARIANTS

Time to Convergence Iterations
CcG 25.35s 211
dPCG 1592 s 128
cPCG 7.62 s 51

As presented in Fig. 3, the proposed preconditioner shows a
significant improvement regarding the convergence of the al-
gorithm. We observe that our PCG method finds the solution
with an accuracy value of —50 dB within less than 30 itera-
tions. On the other hand, the diagonal PCG and the standard
CG need about 135 and 165 iterations, respectively, to reach
the same level of precision. Note also that the circulant PCG
practically converges to the exact solution after only 100 itera-
tions; the floor behavior indicates that the solution has reached
the maximum available precision. Rounding errors explain why
we cannot do much better than —200 dB.

To also provide results of more practical interest, we run the
same experiment for an image of size 512 x 512. In this case,
the stopping criterion for the different variants of the CG algo-
rithm is set to reaching a relative normed difference of 10~ 7.
The corresponding results are reported in Table II and clearly
demonstrate the superiority of the circulant PCG approach over
the other schemes.

D. IRLS Minimization Algorithm

We summarize our proposed algorithm in Table III. Note that
the definition of the weighting matrix W in (34) and (35) re-
quires proper care. Specifically, if, for some pixel : of the image,
(AL®D), [(UEDY,], or |(VED),| are zero, depending on the uti-
lized regularizer, then the corresponding diagonal elements of
the matrices Wgt) and Wg) take an infinite value, which can
prevent convergence. This is known in the MM literature as the
singularity issue [22]. It appears because the majorizer cannot
be defined when image f(*) belongs to the null space of the cor-
responding operator.

This question arises in all the MM-based methods involving
quadratic majorizers for nondifferentiable functions, such as
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TABLE III
SUMMARY OF THE PROPOSED IRLS ALGORITHM

Input:

y: observed degraded image.

A: regularization parameter .

N: number of MM iterations.

Output:

f*: An approximation of the optimal solution of (22).

Initialization:

Set f(O = y.

fort=0: N —1do

Update matrix W®) according to (34)—(35).

Set f(+1) = £(),

Compute S'®), £/(t+1) and y’ according to (43)—(45).

while CG stopping criterion is not satisfied do
Update £'(*+1) with one CG iteration for:
S/(t)f/(t+1) _ y/.

end

Set f(t+1) = p=3f/(t+1),

end

the ones developed for TV regularization [3], [26]. A common
workaround is to redefine the diagonal matrices as

®Y 1 P .
(WL)M_—Q\/W, i=1...N (48a)
®) _ 1
(WU)“‘_N(Afm)ﬁ(rf<t>)f+g o
V2
(W) = (48¢)
iy

(AFO) T+ (ALO)T+(T0) 42

The presence of the small constant ¢ > 0 bounds the diagonal
elements of W and prevents them to take an infinite value, ir-
respectively of the values that (A, [(UE®);| or |(VE®),|
might take.

Meanwhile, Figueiredo et al. have recently presented some
interesting results in [22], which show that the singularity
issue can be handled without recourse to €. They proved that
every component remains nonsingular after a finite number
of iterations, provided that the MM algorithms of this class
are properly initialized. For our regularization scheme, this
amounts to choosing an initial f(®) such that no element
(ALY, |(VED), |, or [(UF®),] is zero-valued.

The convergence of the proposed algorithm can be estab-
lished by noting its direct relation to a variant of the lagged dif-
fusivity method that was first proposed in [26] for TV minimiza-
tion. This method is based on the Euler—Lagrange equation and,
for TV, leads to an elliptic partial differential equation (PDE).
To solve this PDE, Vogel and Oman pursued a fixed-point itera-
tive approach [26], [27, Ch. 8], and the global convergence of its
discrete approximations were proven in [28]. For our problem,
we can follow a similar approach and form the corresponding
fourth-order PDEs. Then, we can show that the discrete version
of the fixed-point iterative approach for solving these PDEs co-
incides with the MM method we are proposing. Using similar
arguments, as in [28], we can then prove the global convergence
of our method.
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Fig. 4. Comparison of the proposed IRLS algorithm with the PDE-based
method of [9] for the task of image denoising using the Frobenius-norm
regularization. The presented results refer to the ISNR and objective cost
evolution along time.

IV. EXPERIMENTS

To validate the effectiveness of our second-order regulariza-
tion scheme for the task of image restoration/deblurring, we pro-
vide experimental comparisons with TV, which currently pro-
duces state-of-the-art results. In addition, to point out the effi-
ciency of the proposed IRLS algorithm for the simpler image
denoising case, we provide an indicative denoising example.

A. Algorithmic Performance

In this section, we compare the computational performance
of the proposed IRLS algorithm for image denoising employing
the Frobenius-norm regularization. The denoising task is per-
formed for the Lena image under Gaussian noise of standard
deviation ¢ = 20. The motivation for this comparison is to
evaluate the efficiency of our scheme for the simpler problem of
image denoising, compared with the PDE-based noise removal
method proposed in [9]. The latter work was the first to intro-
duce the Frobenius-norm regularization for image denoising.

In the reported experiment, each external iteration of our
method involved ten PCG iterations. The step size of the
PDE-based method was chosen so as to achieve the best
possible decrease in the objective function leading also to the
largest increase in SNR (ISNR). In Fig. 4, we plot the evolution
of the ISNR and the decrease in the objective cost for both
methods. As we can clearly see, our proposed method con-
verges much faster, leading to a smaller value of the objective
and a better SNR.

B. Restoration Settings

We have used two distinct sets of images. The first set is com-
posed of five 8-bit grayscale standard test images of size 512 x
512 pixels, shown in Fig. 5. Given that our main interest leans
toward biomedical imaging, we further provide comparisons
on a second set composed of eight cell images. These images,
shown in Fig. 6, are part of the biomedical image database [29].
They were converted to grayscale, and their intensities were ad-
justed to lie in the range [0, 255]. Since their size was relatively
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Fig. 6. Set of biomedical cell images. From left to right: CIL 248, CIL 1585, CIL 7053, CIL 7438, CIL 7762, CIL 9061, CIL 10016, and CIL 7437. CIL stands
for the Cell Image Library identifier. Every image in the database [29] is assigned a unique identifier number.

large, they were also resized, with the largest resulting image
having a dimension of 364 x 487 pixels.

The performance of all methods was examined for two blur-
ring kernels and three different noise levels. For the blurring
operation, we used a Gaussian point-spread function (PSF) of
standard deviation o, = 4 and a uniform one, both of them
having a support of 9 x 9 pixels. As an additional degradation
factor, we considered the Gaussian noise of three distinct levels
corresponding to a blurred SNR (BSNR) of 20, 30, and 40 dB,
respectively. The BSNR is defined as BSNR = var[Af]/o2,
where o is the standard deviation of the noise. The quality of
the resulting images is measured in terms of an SNR increase
(ISNR) measured in decibels. The ISNR is defined as

MSE;,
MSEout

where MSE;,, and MSE,,; are the MSE between the degraded
image and the original image, and the restored image and the
original image, respectively.

Regarding the comparisons with TV regularization, we used
the available code of the MM-based algorithm proposed in [3].
For the L1 -norm Laplacian regularization, instead of using for-
ward finite differences to approximate derivatives, as we do for
the rest of the second-order regularizers, we used the stencil

ISNR = 101og,, ( 49)

0 1 0
1 -4 1
0 1 0

which arises from an approximation with central finite dif-
ferences. The rationale behind this choice is that it yields
better restoration results in terms of ISNR while the Laplacian

operator remains self-adjoint, as in the continuous case. In ad-
dition, for each method under comparison, we used ten external
iterations (i.e., ten successive quadratic-bound minimizations)
to minimize the corresponding objective function. For the
quadratic minimizations, we used the PCG algorithm with
a stopping criterion set to either reaching a relative normed
difference of 1075 between two successive estimates or a
maximum of 200 iterations .

C. Standard Test Images

In Table IV, we provide the comparative results of our pro-
posed second-order regularization scheme with TV, for the set
of the standard test images and an extensive set of degradation
conditions. For the sake of consistency, the reported results for
each regularizer were obtained using the individualized regular-
ization parameter 7 that gave the best ISNR performance.

From this table, we see that, among the second-order regu-
larizers, the Frobenius norm consistently gives the best results,
with the spectral-norm regularizer achieving a slightly inferior
ISNR. On the other hand, the L;-norm Laplacian regularizer
fails to be competitive irrespectively of the considered images
or degradation conditions. In some cases, its performance can
even fall behind by more than 1.5 dB. Meanwhile, the results
obtained using the proposed regularization approach are similar
to those of TV, irrespective of the choice of the Hessian-ma-
trix-norm regularizer. It even turns out that, particularly when
the Frobenius-norm is used, we manage to obtain better ISNR

SFor the PCG method proposed in Section I1I-C, we never reached the max-
imum number of iterations, and the algorithm converged after a significantly
smaller number of iterations.
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TABLE IV
PERFORMANCE OF THE FOUR CONSIDERED REGULARIZERS IN TERMS OF ISNR ON THE SET OF STANDARD TEST IMAGES FOR TWO BLURRING KERNELS AND
THREE DIFFERENT NOISE LEVELS

Tmage / BSNR Uniform blur: 9 x 9 Gaussian blur: 9 x 9
TV Laplacian | Spectral | Frobenius TV | Laplacian | Spectral ‘ Frobenius

s 20 dB 1.48 1.10 1.41 1.44 1.18 0.87 1.13 1.17
';'; 30 dB 2.07 1.62 2.06 2.11 1.68 1.27 1.65 1.70
= 40 dB 3.67 2.98 3.68 3.80 2.53 2.05 2.54 2.58
- 20 dB 3.95 2.89 3.82 3.94 3.10 2.24 3.02 3.11
E 30 dB 6.10 4.69 6.00 6.18 5.08 3.77 4.97 5.14

40 dB 8.56 7.03 8.49 8.70 7.39 5.84 7.29 7.48
E 20 dB 5.75 4.93 6.38 6.48 5.45 4.23 5.83 5.93
i 30 dB 8.06 7.44 8.90 9.04 7.37 6.31 7.91 8.02
E 40 dB 10.83 10.08 11.59 11.79 9.65 8.62 10.19 10.34
§ 20 dB 3.86 3.22 4.08 4.16 3.28 2.73 3.49 3.57
5 30 dB 5.74 4.99 6.06 6.18 4.91 4.17 522 5.32
E 40 dB 8.19 7.38 8.62 8.79 7.11 6.27 7.52 7.67

20 dB 3.95 2.83 3.71 3.82 3.47 2.37 3.20 3.29
E; 30 dB 5.37 427 5.36 5.50 4.69 3.52 4.56 4.70

40 dB 7.60 6.49 7.71 7.90 6.51 5.35 6.50 6.65

(©

Fig. 7. Results on the Boat image degraded by a Gaussian PSF and noise cor-
responding to a BSNR level of 30 dB. Close-up of (a) Degraded image, (b)
L -norm Laplacian solution {ISNR = 3.77), (¢c) TV solution (ISNR = 5.08),
and (d) Frobenius-norm solution (ISNR = 3.14).

scores than TV on all images for many blurring and noise con-
ditions. For the remaining few cases, the difference in terms of
ISNR performance is relatively small.

The success of the proposed method in terms of visual quality
can be appreciated by inspecting the representative Boat and
Fingerprint deblurring examples of Figs. 7 and 8. The Boat
image has been degraded by Gaussian blurring and Gaussian
noise corresponding to a BSNR level of 30 dB, whereas the
Fingerprint image has been degraded by uniform blurring and

Fig. 8. Results on the Fingerprint image degraded by a uniform PSF and noise
corresponding to a BSNR level of 20 dB. Close-up of (a) degraded image, (b)
TV solution (ISNR = 35.73), (c) spectral-norm solution (ISNR = 6.38), and
(d) Frobenius-norm solution (ISNR = 6.48).

Gaussian noise corresponding to a BSNR level of 20 dB. In
the first example, for the second-order regularization case, we
provide the results obtained for the L4 -norm Laplacian and the
Frobenius-norm regularizers.

We clearly see that the L;-norm Laplacian solution suffers
from the presence of intense white-point artifacts. As reported
in [13] and [15], this behavior seems to be also a standard for
the case of image denoising. To deal with this problem, the au-
thors in [13] proposed to apply a median-like filtering on the
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TABLE V
PERFORMANCE OF THE FOUR CONSIDERED REGULARIZERS IN TERMS OF ISNR ON THE SET OF CELL IMAGES FOR TWO BLURRING KERNELS AND THREE
DIFFERENT NOISE LEVELS

Uniform blur: 9 x 9 Gaussian blur: 9 x 9
Image / BSNR TV Laplacian ‘ Spectral ‘ Frobenius TV | Laplacian | Spectral | Frobenius
£ 20 dB 3.50 2.90 3.61 3.65 2.93 243 3.05 3.08
; 30 dB 5.31 4.56 5.60 5.66 4.45 3.76 4.68 4.72
© 40 dB 7.92 7.02 8.31 8.42 6.56 5.72 6.91 7.00
§ 20 dB 3.31 2.84 3.49 3.54 2.83 2.38 2.98 3.02
= 30 dB 4.98 4.57 5.43 5.46 4.20 3.83 4.62 4.63
© 40 dB 7.54 7.13 8.23 8.31 6.28 5.94 6.96 7.01
2 20 dB 4.33 3.41 4.42 4.59 3.52 3.00 3.87 4.00
; 30 dB 7.32 6.07 7.56 7.87 5.53 4.72 5.96 6.18
© 40 dB 10.97 9.61 11.20 11.53 8.67 7.56 9.05 9.26
5 20 dB 2.86 2.40 2.92 2.98 2.50 2.06 2.55 2.60
; 30 dB 3.76 3.24 3.99 4.07 3.04 2.58 3.24 332
© 40 dB 5.59 5.05 5.94 6.06 4.62 4.15 4.97 5.06
g 20 dB 4.77 4.35 4.90 4.95 3.77 351 3.95 3.98
; 30 dB 7.42 6.65 7.65 7.71 6.12 5.54 6.39 6.54
© 40 dB 10.50 9.59 10.76 10.99 8.83 8.12 9.10 9.33
g 20 dB 3.54 3.34 4.03 4.14 2.99 2.77 3.47 3.59
; 30 dB 5.71 5.26 6.22 6.37 4.57 4.46 5.33 5.47
© 40 dB 9.06 8.38 9.51 9.71 7.06 6.77 7.81 7.98
g 20 dB 3.67 3.18 3.87 3.94 2.88 2.50 3.12 3.17
: 30 dB 5.76 5.10 6.09 6.21 4.71 4.14 5.02 4.88
© 40 dB 8.49 7.73 8.70 8.76 6.99 6.17 7.03 7.10
é 20 dB 3.20 2.34 3.05 3.13 2.57 1.82 243 2.49
: 30 dB 4.99 3.92 4.92 5.07 4.01 3.10 4.02 4.13
= 40 dB 7.47 6.30 7.45 7.64 6.05 5.04 6.11 6.28

denoised images. We also tried to use this postprocessing ap-
proach on our restored results, but although we observed a small
increase in terms of ISNR, the majority of the artifacts remained
present. Meanwhile, the TV solution is characterized by sharper
edges, as expected, but also results in blocky artifacts appearing
in the smoother regions of the image. These artifacts are much
less pronounced with the Frobenius-norm solution, which re-
tains the quality of TV at the abrupt transitions of image inten-
sities. While apparent on the Boat image in Fig. 7, this benefit
becomes even more dramatic in Fig. 8, where the Fingerprint
image mostly consists in smooth transitions and ridge features.
From this example, we can also see that, although the Frobenius
norm achieves a better ISNR than the spectral norm, the results
look very similar, and it is difficult to observe any significant
visual differences.

Regarding TV, heavy block artifacts are produced, which
shuffle the details of the image and broaden its fine structures.
It is also worthwhile to note that the sharp intensity transitions
produced by TV do not necessarily correlate with high-quality
restoration as they can be attributed to its inherent tendency to
exaggerate contrast along the image contours. This exaggera-
tion is linked to the staircasing effect itself [30].

D. Biomedical Cell Images

In this section, our main interest is to evaluate the perfor-
mance of Hessian-based regularization on biomedical data,
which is potentially more relevant for practical applications. To
this end, we provide comparative deblurring results for the set

of cell images shown in Fig. 6. In these comparisons, we again
consider the same Gaussian and uniform PSFs for the blurring
operations along with the same three levels of Gaussian noise.

By examining Table V, we see that the second-order regular-
ization approach, employing either of the Hessian-based norm
regularizers, almost always performs better than TV. The supe-
riority of our approach for this class of images can be attributed
to its ability to preserve the ridges and filament-like structures,
which are commonly met in biomedical imaging. This prop-
erty stems from the fact that, similar to simple ridge detectors
[31], the second-order regularizers we are using are based on
the eigendecomposition of the Hessian matrix. However, re-
garding the evaluation of the Laplacian regularizer, we are lead
to the same conclusions as before. Indeed, the L4 -norm Lapla-
cian cannot compete with any of the other methods and consis-
tently gives the worst results.

Beyond ISNR considerations, we present qualitative com-
parative deblurring results on the cell images CIL 7762 and
CIL 7437 in Figs. 9 and 10, respectively. In these examples,
the former image has been blurred by a Gaussian PSF and fur-
ther degraded by Gaussian noise corresponding to a BSNR of
30 dB, whereas the latter has been degraded by uniform blurring
and noise resulting in a BSNR of 20 dB. The behavior of the
Li-norm Laplacian regularizer is consistent with the findings
of the previous sections, i.e., that the obtained solutions suffer
from the presence of white-point artifacts. This regularization
approach therefore cannot be considered a reliable solution in
biomedical applications as it may bias the interpretation of the



994

© (d)

Fig. 9. Results on the CIL 7762 image degraded by a Gaussian PSF and noise
corresponding to a BSNR level of 30 dB. Close-up of (a) degraded image, (b) TV
solution (ISNR = 4.37), (c) spectral-norm solution (ISNR = 5.33), and
(d) Frobenius-norm solution (ISNR = 3.47).

© (@

Fig. 10. Results on the CIL 7437 image degraded by a uniform PSF and noise
corresponding to a BSNR level of 20 dB. Close-up of (a) degraded image,
(b) L1 -norm Laplacian solution (ISNR = 2.40), (¢) TV solution (ISNR =
2.86), and (d) spectral-norm solution (ISNR = 2.92).

structure of the image. As far as TV solutions are concerned, we
observe that favoring piecewise-constant image patches tends to
oversmooth certain features, which wipes out important details
of the image structure. On the other hand, both Hessian-based
regularizers manage to restore the fine details more accurately
while maintaining their actual size even in cases where the level
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of noise is substantial. It is also worthwhile to mention that, once
more, although the Frobenius regularizer yields a better ISNR
than the spectral one, the visual quality of the corresponding re-
sults is similar.

V. CONCLUSION

In this paper, we have devised a novel second-order regular-
ization scheme to solve linear inverse problems geared toward
biomedical imaging applications. Specifically, we proposed a
unifying framework for the minimization of the objective func-
tion employing several different second-order regularizers. The
proposed optimization algorithm is of IRLS type and results
from an MM approach. It relies on a problem-specific PCG
method that we have also designed. Our PCG approach makes
the overall minimization scheme quite attractive since it can
be effectively applied to large images in a reasonable compu-
tational time. Furthermore, motivated by the great effective-
ness of TV regularization, we have extended its definition to
also include higher order differential operators. We have shown
that the resulting Hessian-based second-order regularizers can
be a good choice for deblurring images that are not dominated
by piecewise-constant regions and sharp edges but, rather, by
ridges or smoother transitions of intensity. Fluorescence mi-
croscopy images tend to contain many such features.

The performance and the practical relevance of the proposed
regularization scheme for image restoration have been illus-
trated through comparisons with the state-of-the art TV method.
Our regularization approach is very competitive, particularly in
the case of biomedical images. The results we have obtained
are promising, both in terms of restoration quality and compu-
tational performance.
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