Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Hessian Regularization
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

A Projected Gradient Algorithm for Image Restoration Under Hessian Matrix-Norm Regularization

S. Lefkimmiatis, M. Unser

Proceedings of the 2012 Nineteenth IEEE International Conference on Image Processing (ICIP'12), Orlando FL, USA, September 30-October 3, 2012, pp. 3029-3032.


We have recently introduced a class of non-quadratic Hessian-based regularizers as a higher-order extension of the total variation (TV) functional. These regularizers retain some of the most favorable properties of TV while they can effectively deal with the staircase effect that is commonly met in TV-based reconstructions. In this work we propose a novel gradient-based algorithm for the efficient minimization of these functionals under convex constraints. Furthermore, we validate the overall proposed regularization framework for the problem of image deblurring under additive Gaussian noise.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/lefkimmiatis1203.html,
AUTHOR="Lefkimmiatis, S. and Unser, M.",
TITLE="A Projected Gradient Algorithm for Image Restoration Under
	{H}essian Matrix-Norm Regularization",
BOOKTITLE="Proceedings of the 2012 Nineteenth {IEEE} International
	Conference on Image Processing ({ICIP'12})",
YEAR="2012",
editor="",
volume="",
series="",
pages="3029--3032",
address="Orlando FL, USA",
month="September 30-October 3,",
organization="",
publisher="",
note="")

© 2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved