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ABSTRACT

Three-dimensional information about an object, such as its depth, may be captured and stored digitally in a single, two-
dimensional, real-valued hologram acquired in an off-axis geometry. Digital reconstruction of the hologram permits the
quantitative retrieval of depth data and object position, or allows post-acquisition focusing on selected scenes. Over the
past few decades, a number of reconstruction algorithms have been proposed to perform this task in various experimental
conditions and for different purposes (metrology, imaging, etc.). Here, we aim at providing guidelines for deciding which
algorithm to apply to a given problem. We evaluate reconstruction procedures based on criteria such as reconstruction
quality and computational complexity. We propose a simulation procedure of the acquisition process, that allows us to
compare a large body of experimental situations and, because the ground truth is known, achieve quantitative comparison.
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1. INTRODUCTION

Digital Fresnel holograms' # acquired in an off-axis geometry are two-dimensional, real-valued digital images that contain
information to reconstruct complex-valued wave-fronts. During acquisition, the object of interest is illuminated, (possibly
transilluminated) and the reflected (or transmitted) light is propagated to the recording medium, e.g. a solid-state camera. A
reference wave, whose propagation direction is at some angle to that of the object wave (see Fig. 1), creates an interference
pattern that is recoded,

I(x) = |¥(x) + R(x)|?, with R(x) = A(x) exp[iv(x)], (1)

where the phase of the reference wave 9(x) is assumed to be known and x = (x,y). If the reference is a plane wave, it
can be written, in the acquisition plane, as

R(x) = A(x) expli(kax + kyy)], )

where £, and k, are the components of the wave vector in the acquisition plane.

The wave-front ¥(x) in the acquisition plane is related to the wave-front in the vicinity of the object of interest, ¥ (x)
by the following equation, known as the Fresnel transform

eikkd

V(x) = — //w(&n)exp{iz [(ﬁ—x)2+(n—y)2]} dédn 3)

where A is the wavelength, k) = 27/ is the wavenumber, and d is the distance between the object and the acquisition
plane.

Unlike other arrangements for acquiring digital holograms, the off-axis geometry only requires the acquisition of a
single image to record all the information to subsequently reconstruct the object wave-front. This approach has clear
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Figure 1. Setup for lensless digital Fresnel off-axis holography.

advantages over methods that require several interferograms to retrieve a complex wave when acquiring time-series, but
the increase in temporal resolution comes at the cost of a loss in spatial resolution. Indeed, the presence of fringes reduces
the lateral resolution of the reconstructed image.

Many approaches and algorithms for hologram reconstruction have been proposed in recent years. Depending on the
parameters of the optical arrangement, they have advantages and disadvantages. Some are suitable for all optical setups
while others may only be used in specific situations. We present a qualitative and quantitative approach to the evaluation
and comparison of algorithms for the reconstruction of digital off-axis Fresnel holograms. Our aim here is to draw a more
complete picture of the relative performances of four algorithms in various optical configurations. The methods are: 1.
reference wave simulation via numerical Fresnel transform, 2. Fourier filtering, 3. non-linear Fresnelet approximation, and
4. alocal least-squares wave retrieval procedure. The presented results should facilitate the task of choosing an appropriate
algorithm. The comparison is based on the evaluation of the reconstructions from computer generated holograms against a
gold standard. Although an evaluation based on synthetic data possibly neglects some aspects present in true experimental
conditions, it has the invaluable advantage of giving insight into the performances of the algorithms on a quantitative basis.
The situations we present in the following sections are not meant to constitute an exhaustive set of all possible parameter
combinations, but it should be possible to apply the methodology to other situations.

There have been only few attempts to quantitatively compare and evaluate the performance of different digital hologram
reconstruction algorithms in an extended number of situations. Most validation tests have been carried out on experimental
data for which the true gold standard is difficult to access. One approach, proposed by Cuche et al.,>*6 is to compare the
reconstructed phase (respectively, the profile) of a USAF test target to the height measured by scanning a contact-stylus
probe profilometer over the same sample. Repeating such an experimental procedure in a large number of configurations
would be of highest interest, mainly because it takes into account the whole optical system. However, the time required
by such a study would most likely be prohibitive. What we propose here instead is to evaluate the algorithms at hand on a
quantitative basis, by restricting the number of influent parameters and by using an exact gold standard. This is made pos-
sible by simulating the acquisition process. Even if this does not replace experimental validation, it gives precious insight
on the respective impact of each single parameter on the overall performance of the different algorithms. Comparisons of
some of the digital versions of the Fresnel transform,® % 712 a central part for the reconstruction procedure, have been
carried out by Kreis et al..'? In the field of phase retrieval and optical wave-front reconstruction, several comparisons have
been proposed.'4: 15

This paper is organized as follows. In Section 2 we present the evaluation methodology and review a list of parameters
that influence the acquisition and reconstruction of digital holograms. In Section 3 we briefly outline the algorithms to be
compared. In Section 4 we present quantitative evaluation measures for wavefront comparison. In Sections 5 and 6 we
present and discuss the results of the comparisons in the case of a lensless setup, synthesize the gathered findings and give
an outlook on future work.



2. PARAMETERS OF INFLUENCE

Our evaluation methodology allows for the inclusion of various aspects of the experimental acquisition procedure. In
particular, parameters linked to the following components could be taken into account: light source (spatial and tempo-
ral coherence, wavelength, intensity profile), optical setup [parasitic reflections, discrepancy from ideal model (nonideal
system response, finite apertures, etc.)], object wave (object-hologram distance, size of objects), reference wave (angle to
object wave, planarity, intensity ratio to object wave intensity, profile), acquisition device (sampling step, spatial extent,
linearity of response, quantization, noise, corrupt regions).

Here, we restrict our study to the influence of the object-hologram distance and the angle between the object and
reference wave on the reconstruction quality. In particular, we won’t discuss the different implementations of the Fresnel
transform per se, although it is central part of to the reconstruction process. For all reconstructions and simulations, we
relied on a Fresnelet-based algorithm developed elsewhere.®

3. CONSIDERED ALGORITHMS

3.1. Plain Fresnel Transform

This technique consists in simulating the physical reconstruction process': 34 13:16 in which the hologram is illuminated

by a replica of the reference wave. The latter is diffracted and the three diffraction orders, the image (+1), the twin-image
(-1) and the zero order (0) are spatially separated in the object plane. This process may be carried out numerically using
a discrete version of the Fresnel transform (3). However, due to the limited angle between object and reference wave
imposed by the sampling size of the camera, some overlap between the three orders usually subsists.

3.2. Fourier Filtering

In this technique, to avoid the aforementioned overlap problem, the hologram (or, alternatively, the reconstructed wave) is
filtered using a band-pass filter to remove the part of the signal that corresponds to the zero and -1 diffraction orders. The
filtering is carried out either in the frequency domain or using a digital filter defined in the spatial domain.'”2° (See also
refs?!723 for similar techniques in the general context of interferometry). The techniques mainly vary for the choice of the
bandpass filter design. Here, we have chosen to carry out the filtering in the frequency domain using a circular window
with smoothed edge, centered around the modulation frequency of the reference wave.

3.3. Nonlinear Fresnelet Approximation

It is possible to take advantage of both the separation in space and frequency of the three diffraction orders. In the Fresnelet
domain,® the coefficients associated to the contribution of the 0 and -1 orders are separated both spatially and with respect
to the frequency bands. It is therefore possible to suppress them by selectively thresholding the Fresnelet coefficients.?*
Essentially, in regions where the image is not corrupted by the interference terms, no action is taken, while in regions
severely corrupted (where the real image and the zero-order overlap) Fresnelet coefficients corresponding to particular
frequency bands are thresholded.

3.4. Least-Squares Estimation (LSE) and Fresnel Transform

The reconstruction of digital off-axis Fresnel holograms can be decoupled into a phase retrieval problem and a propagation
problem. Using this idea, a very flexible reconstruction method has been presented elsewhere.?® It consists of two steps:
1. amplitude and phase retrieval in the acquisition plane using a non-linear least-squares estimation (LSE) technique given
an a-priori model of the reference wave, and 2. Fresnel propagation up to the correct distance to adjust the focus.

3.5. Other Methods

There are several other reconstruction methods that we did not include in this comparison, including statistical methods?%
or some based on neural nets.2”



4. COMPARISON METHODOLOGY

The general methodology for the comparison of the different algorithms consists in: 1. choice of a gold standard wave-front
that is representative of an objet, 2. generation (simulation) of a digital hologram, via propagation of the gold standard
wave-front, interference with a reference wave, and square-law detection, for various values of the parameters of interest, 3.
reconstruction of the wave-front using the different algorithms, and 4. comparison of the reconstructed and gold standard
wave-fronts.

The last step, the comparison of two two-dimensional, complex-valued, sampled functions f(x) and f’(x) requires
special attention. We first need to recall that phase retrieval algorithms that rely on a single fringe pattern and no a priori
knowledge are subject to a sign ambiguity and phase offset inherent to the interference patterns: a general interference
pattern given by

laexp(ia) 4+ bexp(if)|* = a® 4+ b* + 2abcos(a — 3), 4

may equivalently be produced by the phase couples o/, 3':

o =4+a+0 and B =+p+6, 3)
ora =—a+6 and g =—-p+0, (6)

with 6 € R. The sign ambiguity may be alleviated by using some a priori knowledge and the phase offset arbitrarily set to
zero. Furthermore, only the principal argument of the complex number Z = aexp(i¢) € C, a € Ry, ¢ € R is available
and not the phase per se. The phase is said to be wrapped?®:

W} =argZ =¢+2kn,k€Z : —m <W{o} <. @)
We make use of the following congruence property when comparing phases:
W{W o1} =W {d2}} =W{d1 — 2}, if —m <1 —da <. (®)

Thus, if the difference is sufficiently small, we may evaluate the reconstruction quality without having to unwrap the result.

We define three quality measures for comparing complex-valued images. The first definition of the Signal to noise
ratio (SNR) is as follows:
D Al
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K

where fi. = ay e'?* € C is the gold standard image and f], = aj, ¢'%k e C the reconstructed image. Since results in digital
holography are usually given in terms of amplitude and phase, we also define the two following quality measures, for the
amplitude and the phase, respectively:
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The indices k are taken over a suitable portion of the image. In all subsequent experiments, it covers a centered square
whose size is 60% of the total image width to factor out boundary effects.
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Figure 2. Gold standard test target object wave. Amplitude [0.5, 1.5] (a) and phase [—0.27, 0] (b) in the vicinity of the object. Amplitude

(c) and phase (d) in the CCD plane. Reference wave amplitude (max amplitude: 10) (e) and (wrapped) phase (f). (g) Hologram.
Parameters are ' = 10 pum, N = Ny = 512, A = 632.8 nm, d = 0.05 m and K, = K, = —0.6.

5. LENSLESS FRESNEL OFF-AXIS HOLOGRAPHY: A COMPARISON
5.1. Generation of the Gold Standard

In this section we examine the four digital hologram reconstruction algorithms in the case of a lensless setup, as shown in
Fig. 1. We set the wavelength to A = 632.8 nm. The reference wave vector is ky = (k,, ky, k.) and the wavenumber
kx = 2n/X = (k2 + kz + k2)Y/2. The camera has a sampling step 7 = 10 pm and N, X N, = 512 x 512 pixels.
We simulated the propagated wave at a distance d from the object and added a complex reference wave with parameters
K, = kT and Ky = k,/T. We then computed the squared modulus of the resulting field. We sampled the latter on the
area corresponding to the camera’s support, again with a sampling step 7'. In Fig. 2 we show the steps that lead to the gold
standard test target.

5.2. Distance and Angle

We now turn to the investigation of the influence on the reconstruction quality of the distance parameter d and the angle
between the reference and the object wave. We have considered that the distance between the object and the CCD varies
between 0.01 m and 0.4 m and generated the corresponding holograms for various angles between the object and reference
wave. We have reconstructed the amplitude and phase images using the following algorithms: a plain Fresnel transform, a
Fourier filtering followed by Fresnel transform, the Fresnelet approximation and the LSE followed by a Fresnel transform.

In Fig. 3, we show the SNR quality curves for the tested situations. In Figs. 4, 5, and 6 we show the reconstructed
amplitudes and phases with the different algorithms for various angles between the reference and the object wave.

We notice that the curves are similar for the overall quality and the amplitude. We see that a larger distance can
compensate for a lower angle. When no filtering is used, it is the product (k, —l—ky)l/ 2\d which is crucial: the reconstruction
is uncorrupted by the zero-order term only if this value is well above the object’s support.

One can see that the Fresnelet approximation gives better results (amplitude reconstructions) when a compromise
between space and frequency filtering is achievable. This corresponds to regimes where the product d\ (k2 + k:fl) 1/2 /(27)
is larger than zero (the different orders do completely overlap) but smaller than the support of the image (the different
orders are completely separated in the space domain). As soon as the different orders are well-separated in space, neither
the Fourier filtering nor the Fresnelet approximation bring an advantage over the plain Fresnel transform. When the
distance is zero, only the Fourier filtering and the LSE algorithms are capable of retrieving meaningful information. It is
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Figure 3. Reconstruction quality [SNR]=dB as a function of distance [d]=m. From top to bottom K, = K, = —0.6, —0.8, -1, —1.2.
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SNRp, = —9.77 SNRy = 13.05 SNR,;, = 8.83 SNRy, = 14.74
SNR = —20.30 SNR = 14.60 SNR = 12.27 SNR = 15.58

Figure 4. Reconstructions (top amplitude, bottom phase) for d = 0.05 m and K, = K, = —0.6. Algorithms from left to right: Plain
Fresnel transform, Fourier filtering and Fresnel transform, Fresnelet approximation, LSE and Fresnel transform.

also noteworthy that the LSE method outperforms the other approaches, especially for low K ,, i.e., for low angles. For
the higher angles, the Fourier filtering method yields better amplitude results. Also, this is true only if we limit the part of
the image that is taken into account for computing the SNR to the center rather than taking the whole field of view. Since
the LSE is local, it is less affected by boundary artifacts.

Overall, the reconstruction quality decreases as the distance increases. This is due to the fact that the CCD has a limited
support; it therefore misses important information that spreads outside its boundaries. In certain cases, however, a nonzero
distance is unavoidable because of space constraints dictated by the optical elements. Generally speaking, we observe that
the quality increases as the angle increases. There is of course an upper bound on the maximal angle that is dictated by the
CCD’s sampling step.

There is no algorithm that is superior to all others in every situation. A method that may seem optimal for a given
setup may well become obsolete as soon as a new technology (camera, computer,...) becomes available or economically
more attractive. The design of digital holography setups has largely been influenced by the computational limitations
of early calculators. The simpler and faster algorithms would be chosen because there was no alternate way to carry
out the computations within reasonable time. Such considerations have undoubtedly led to the design of experimental
setups optimized for the fastest algorithm. However, methods that were abandoned because they did not meet the speed
requirements have not necessarily been reevaluated in the light of the currently available computing power. An algorithm
should be adapted to the problem and not the other way around. As a consequence, a flexible algorithm has unquestionable
advantages. It should be ready for technological improvements of digital cameras, such as lower sampling steps, larger
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SNRp = —3.62 SNRyn = 18.32 SNRy, = 17.09 SNRp = 19.35
SNR = —7.53 SNR = 19.76 SNR = 19.30 SNR = 19.86

Figure 5. Reconstructions (top amplitude, bottom phase) for d = 0.15 m and K, = K, = —1.2. Algorithms from left to right: Plain
Fresnel transform, Fourier filtering and Fresnel transform, Fresnelet approximation, LSE and Fresnel transform.

camera size and the increased storage capacity and clock speed to be expected from future computers.

6. CONCLUSION

In this paper, we presented a methodology to compare algorithms for the reconstruction of digital Fresnel off-axis holo-
grams. We have compared four digital hologram reconstruction methods in various situations and found that they perform
differently depending on the experimental conditions and the measurements of interest (amplitude, phase). The method-
ology should be suitable for independently examining a wide number of other parameters and methods in a controlled
environment.
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