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ABSTRACT

This paper presents an image-segmentation method which

compensates multiplicative distortions based on smooth reg-

ularity assumptions. In this work, we generalize the original

Chan-Vese functional to handle a continuous multiplicative

bias. In the derivation of our model, we show that the op-

timal correction function is necessarily a spline, which we

express in terms of discrete coefficients. Following an itera-

tive technique, we propose to find the solution by an alternate

optimization of this map and of the segmented domains. In

order to maximize the overall efficiency, graph cuts are com-

bined with a specifically designed multigrid algorithm. Our

experiments demonstrate the relevance of our approach for

biomedical data.

Index Terms— Chan-Vese model, graph cuts, image seg-

mentation, intensity inhomogeneity, multigrid methods, non-

uniform illumination, B-splines, variational methods.

1. INTRODUCTION

The acquisition of biomedical images often involves some

sort of bias, which can be attributed to several factors among

which nonuniform illumination, static-field inhomogeneity,

or reception-coil-sensitivity inhomogeneity in the case of

MRI. These distortions render the analysis or post-processing

of the data intricate [1]. In particular, most classical segmen-

tation methods suffer from such biases.

There is an important dependency between intensity-

inhomogeneity correction and segmentation. Indeed, know-

ing the solution of either of the two problems causes the other

one to have a simpler form [2]. As a consequence, approaches

for joint segmentation and bias correction have been proposed

by several authors. In order to yield a satisfactory result, these

techniques are iterative and rely on specific models for the

bias [3].

In the presence of noise or similar visual artifacts, seg-

mentation models typically entail the minimization of an en-

ergy functional according to some shape prior. The Chan-

Vese model, for instance, regularizes the length and area of
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the solution contours, while being based on the expected in-

tensity values of the background and object of interest [4]. In

this framework, Wang et al. have provided a modified energy

functional which compensates local multiplicative inhomo-

geneities in the image [5]. Meanwhile, other researchers have

proposed to compensate a global multiplicative bias based on

a log-type formulation [6].

In this paper, we propose a variational method based on

a generalized Chan-Vese functional for the joint segmenta-

tion and multiplicative-bias compensation of an image. This

technique allows for precise segmentation as well as accu-

rate global correction of image intensities. The key aspect of

our strategy lies in the use of a correction term which mod-

els the bias as a multiplicative smoothing-spline function. In

order to efficiently retrieve this correction term along with

the segmented image, we devise an iterative minimization

strategy consisting in a multigrid algorithm combined with

graph cuts. We perform several experiments on MRI and

autofluorescence-microscopy data which illustrate the appli-

cability of our approach.

2. SEGMENTATION MODEL

Let v : Ω ⊂ R
2 �−→ R be the continuous-domain intensi-

ties of a given image. Considering the two-zone segmenta-

tion problem, we are looking for two open sets Ω1 ⊂ Ω and

Ω2 = Ω \ Ω1 which correspond to the region of interest and

the background of the image, respectively. The spatial dis-

tribution of Ωi is represented by the characteristic function

χ : Ω �−→ {0, 1} as

χ(x) =

{
1, x ∈ Ω1

0, x ∈ Ω2.
(1)

In this work, according to [7] we model the intensity inhomo-

geneity of v as a slowly varying multiplicative term s : Ω �−→
R such that

v(x) = s(x)u(x) + n(x), (2)

where u and n are the inhomogeneity-free intensity function

and some additive Gaussian noise, respectively.

According to the segmentation model of [4], a piecewise-

constant approximation of the corrected image can be inferred
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from χ as

u(x) ≈ v(x)/s(x)

≈ χ(x)q1 + (1− χ(x))q2, (3)

where the scalars qi are the expected intensities of Ωi.

As long as the effect of s is negligible as it approaches

unity, the Chen-Vese formulation [4] can be used to find q1,

q2, and χ. This amounts to minimizing the energy

F (q1, q2, χ) = μV (χ,Ω) + ν‖χ‖L1(Ω)

+ γ1‖χ(u− q1)‖2L2(Ω)

+ γ2‖(1− χ)(u− q2)‖2L2(Ω), (4)

where V is the total-variation operator (i.e., V (χ,Ω) repre-

sents the length of the boundary ∂Ω1 of Ω1), γ1, γ2 > 0, and

μ, ν ≥ 0 are regularization constants. This yields the optimal

values q1 = 1
‖χ‖

∫
Ω1

u(x) dx and q2 = 1
‖1−χ‖

∫
Ω2

u(x) dx.

In our case, s can significantly depart from unity, due to

the type of data we consider. In order to properly handle this

non-ideality, our contribution is to propose a generalized ver-

sion of the Chen-Vese functional F . For the sake of accuracy,

we also account for the sampled nature of the available image.

Accordingly, we define our new functional J as

J(q1, q2, s, χ) = μD(χ1, v1)

+ ‖χ1(v1 − s1q1)‖2�2(Ω)

+ ‖(1− χ1)(v1 − s1q2)‖2�2(Ω)

+ λ‖Ls‖2L2(Ω), (5)

where s1 : Ω ∩ Z
2 �−→ R is the sampled sequence defined

as s1[k] = s(x)|x=k. The same definitions apply for χ1

and v1 relative to χ and v. In this compound energy, D de-

notes a graph-representable regularizer [8]. Compared to (4),

the essential difference is the presence of the multiplicative

map s; the latter is regularized by the smooth term ‖Ls‖2L2(Ω)

weighted by λ ≥ 0, where L is a spline-admissible differen-

tial operator [9].

Lemma 1. Assuming that the function s belongs to the gener-
alized Sobolev spaceWL

2 associated with L, its optimal form
minimizing (5) is an L∗L spline.

Proof. The property s ∈ WL
2 implies that ‖Ls‖2L2

is a spline

energy which decomposes into

‖Ls‖2L2
= ‖Lsint‖2L2

+ ‖L(s− sint)‖2L2
,

where sint is the unique L∗L spline interpolating s at integer

positions. Since all terms of (5) except ‖Ls‖2L2
are a mere

function of the sampled solution s1, and given the above de-

composition, (5) is optimally minimized iff s = sint. In other

words, the optimum is itself an L∗L spline, which concludes

the proof.

Using Lemma 1, we express the continuous solution s without

any loss of generality as

s(x) =
∑

k∈Z2∩Ω

c[k]ϕ(x− k), (6)

where ϕ is the corresponding L∗L-spline basis function, and

where c are the spline coefficients. From (6), we rewrite the

cost to be minimized as a function of c. Namely,

J(q1, q2, s, χ) = μD(χ1, v1)

+ ‖χ1(v1 − (φ 	 c)q1)‖2�2(Ω)

+ ‖(1− χ1)(v1 − (φ 	 c)q2)‖2�2(Ω)

+ λ‖r 	 c‖2�2(Ω), (7)

where 	 denotes a discrete convolution, and where the discrete

filters φ and r are defined as

φ[k] = ϕ(x)|x=k (8)

r[k] = Lϕ(x)|x=k, (9)

respectively. The problem thus amounts to finding the dis-

crete coefficients c of the continuous map s, given the samples

v1 and the constants qi.

3. OPTIMIZATION

In order to obtain the segmented zones along with the multi-

plicative bias s, we have to minimize (7) with respect to qi,
χ, and s. Our strategy is to optimize these quantities sequen-

tially one at the time, keeping the others fixed. Accordingly,

the optimal qi corresponds to the update rule

qi =

∫
Ωi

v(x)/s(x) dx∫
Ωi

1/s(x) dx
. (10)

Regarding the optimization of χ, we follow a standard graph-

cut approach. The details of the graph construction in the gen-

eral case and the fast minimization algorithm are presented in

[8] and [10], respectively. Finally, the minimization of (7)

with respect to the coefficients of the correction map s cor-

responds to the resolution of a quadratic problem which we

describe below. Our overall algorithm first initiates the val-

ues of χ and qi. Starting from these initial conditions, it then

updates s, χ, and qi through M successive cycles.

4. MULTIGRID ALGORITHM

The minimum of each functional with respect to the spline

coefficients c corresponds to the solution of the linear system

Ac = f (11)

in matrix notation, where

A = BTWB+ λR (12)

f = BT [(q1χ+ q2(I− χ))v] . (13)
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The vectors v and c contain the corresponding sequences v1

and c in lexicographic ordering, respectively. The diagonal

matrices W and χ implement a pointwise multiplication with

the sequences (q21 − q22)χ
1 + q22 and χ1, respectively, and B

and R are convolution matrices associated to the discrete ker-

nel φ and to the finite-difference filter r 	 r[−·], respectively.

In practice, the dimensions of A in (11) are such that this

matrix cannot be inverted directly. To find an approximate

solution, we resort to an iterative approach to reduce the norm

of the error ε = A−1f − c, or, equivalently, of the residual
ρ = f −Ac. Since it involves no matrix inversion, ρ can be

computed exactly. For instance, the gradient descent updates

the solution as c← c+ ωρ with step ω.

Given the particular properties of the multiplicative bias,

most components of the solution s tend to be low-frequency.

In this case, mathematical analysis demonstrates that iterating

at additional coarse scales accelerates the convergence [11].

Let us first reformulate Problem (11) at nominal dis-

cretization as A1c1 = f1, where the superscript h denotes

the sampling step in each dimension associated to the grid Ωh

of the domain Ω. Following N1 iterations at that scale, the

remaining error ε1 tends to be mostly low-frequency, as these

components are less efficiently reduced asymptotically [11].

Our strategy to improve the convergence rate without in-

creasing N1 is to transfer the corresponding residual ρ1 =
Aε1 onto a coarser grid Ω2. This transfer operation is per-

formed as ρ2 = I2hh ρ1, where I2hh is a restriction operator
that resamples the data from Ω1 to Ω2. At that resolution, the

remaining low-frequency components of ε1 can then be iden-

tified efficiently through ε2, iterating on the coarse problem

A2ε2 = ρ2, where A2 is a low-resolution counterpart of A1.

The components of ε1 become essentially high-frequency in

ε2, which is associated to higher convergence rates.

The obtained ε2 can then be used to correct c1 after re-

sampling it back to Ω1. Using the prolongation operator
Ih2h as the dual of I2hh , we write these operations as c1 ←
c1 + Ih2hε

2. In order to compensate for the approximate grid

transfers, the solution is again iterated N2 times on Ω1.

In our implementation, we follow a recursive version of

this approach called full-multigrid cycles [11], which involves

N0 update cycles through V distinct grids. At each grid, we

use successive over-relaxation as an iterative method. The

definition of the transfer operators depends on the basis ϕ.

For instance, using tensor-product B-splines of order n yields

I2hh = D2H
T
2 , (14)

where D2 is a downsampling-by-two matrix, and where H2

is a circulant matrix that corresponds to the scaling filter h2 of

order n defined in [12]. Regarding the coarser-scale expres-

sions of A1, we constrain their general form to maintain

Ah = BTWhB+ λRh. (15)

According to the variational properties [11], an ideal coarse-

grid matrix A2h should be defined as A2h = I2hh AhIh2h. Ap-

plying this principle to our convolutive terms Rh, we obtain

the spatial-domain relation

r2h = {h2 	 r
h 	 h2

T }↓2, (16)

where ↓2 denotes a downsampling by 2 of a sequence in

each dimension, and where r1 = r. Regarding the terms

BTWhB, we rather resort to a pyramid of weights because

the variational properties do not comply with a simple matrix

structure. Defining w1 = w, the diagonal matrix Wh is

found through the spatial-domain relation

w̃2h[k] = {h2
T 	 wh}↓2[k]. (17)

5. EXPERIMENTS

In this section, we apply our algorithm to biomedical data.

In our implementation, we specify L as the Laplacian oper-

ator. Its nullspace is adapted to the segmentation of images

with linear background variations. This choice corresponds

to a fourth-order polyharmonic spline which is spanned by

radial basis functions [13]. For computational reasons, we

select the tensor-product B-spline basis functions (i.e., cubic

splines) first mentioned in Section 4. In our graph-cut im-

plementation, we adapt the 8-neighbor-system regularizer D

presented in [14] to the characteristic function χ.

In the experiments described below, we have obtained our

results using less than 4 iterations in each case. The code has

been implemented in Java.

We show in Figure 1 a result of our segmentation method

applied to the image of a Caenorhabditis elegans acquired

with a point confocal microscope, where the intensities are

nonuniform due to some parts that are in defocus. We note

that the correction of the background allows one to prop-

erly identify the segmented areas of the biological structure.

As expected, the multiplicative background correction takes

higher values when the uncorrected image has a low intensity

in the corresponding locations. We also note the high smooth-

ness of the correction map due to regularization, and its rela-

tive independence with respect to the structure of the object.

The estimated inhomogeneity factor in (d) lies approximately

in an order-of-magnitude range.

In Figure 2, we show an MRI scan of a brain where the

presence of system coils has resulted in a bias field. In this

second experiment, we compare this image to its background-

corrected version using our method. Taking the weighted av-

erage of twelve distinct coil acquisitions as a reference, the

observed SNR improvement reaches about 6 dB.

6. CONCLUSIONS

We have devised a segmentation method. It is based on a

smoothing-spline model and can be used to compensate for

multiplicative distortions of image intensities. The results ob-

tained on real biomedical data are encouraging, and we have
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(a) (b)

(c) (d)

Fig. 1. Simultaneous segmentation and intensity correction of a

microscopic image: (a) original image, (b) segmented data, (c)

background-corrected image, (d) estimated inhomogeneity.

been able to perform a satisfying segmentation despite high

intensity variations in the available data. While the method

is inherently iterative, it tends to stabilize after relatively few

updates of the solution.
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