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Abstract: We present a 3D iterative reconstruction method for microtomography, where
iterative methods have previously been limited by their high computational cost. Our prelim-
inary results show that it improves reconstruction quality over the traditional slice-by-slice
method.
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1. Introduction

Iterative methods including regularization have been shown to produce high-quality X-ray reconstructions from fewer
and noisier projections than direct methods [1], however, in microtomography (including synchrotron-based tomog-
raphy [2] and electron tomography), iterative methods have so far been limited to being performed slice by slice
(e.g., [3, 4]). This is partly because in the parallel-beam, fixed-axis setting, each X-ray travels only within a single
slice, and thus the 3D problem naturally decomposes into a set of 2D problems. But it is also because the large number
of measurements collected in these modalities make full 3D iterative reconstruction prohibitively costly.

In this work, we present a computational framework for performing iterative parallel-beam microtomography re-
construction in full 3D, allowing for a broader class of regularizers, including 3D total variation (TV) or Hessian
Schatten-norm regularization [5]. This enables the reconstruction to achieve a more favorable trade-off between dose
reduction and reconstruction quality than that of slice-by-slice methods. To make the method computationally feasible,
we uncover discrete convolutions so that iterations occur at the cost of a 3D filtering operation (an approach which was
developed by [6] in the 2D case). In the following sections, we briefly formulate the X-ray tomography reconstruction
problem, present the fully 3D method, and show preliminary results comparing it to the slice-by-slice method on a 3D
analytical phantom.

2. Problem Formulation

We use the standard definition of the X-ray transform as the line integrals of a function of 2D or 3D space, f . We
then perform a generalized discretization, representing f by a sum of shifted kernels: f (x) = ∑k c[k]ϕ (x−Λxk) ,
where Λx contains the sampling step in each of d dimensions. Common choices for ϕ in the literature include voxels,
splines [7, 8], or other blobs. Discretization allows us to define discrete versions of the forward, adjoint, and normal
X-ray operators, H, HT , and HT H, respectively. The last two of these are needed for our iterative reconstruction
algorithms.

3. Reconstruction Methods

Both the slice-by-slice and fully 3D methods are based on the discrete optimization problem,

c∗ = argmin
c
‖g−Hc‖2 +λΨ(c), (1)

where g is a sinogram containing X-ray measurements at discrete locations, Ψ is a regularization function, and λ

controls the regularization strength. We solve (1) using the now-ubiquitous alternating direction method of multipliers
(ADMM) [9].
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3.1. Fully 3D

In the fully 3D case, we fix the discretization function, ϕ , to be an isotropic 3D generalized Kaiser-Bessel window
(KBW) [10] with m = 2, α = 10.45, and a spatial support equal to 4 times the sampling step in space. (We pick these
values based on our analysis in [11], which shows that they improve the approximation properties of the kernel.) For
the regularization term Ψ(c), we use TV, which is the `1 norm of the magnitude of the gradient vector (approximated
with finite differences) at each location in c. This choice of regularization means that the values of c are linked in all
three dimensions, which is what makes the reconstruction fully 3D. With the kernel and regularizer thus fixed, the
optimization proceeds via standard ADMM iterations (in our case, conjugate gradient, followed by the proximal map
of Ψ, followed by an update of Lagrange multipliers).

We note that the main bottleneck of this scheme is computing HT g and HT Hc. Our algorithm relies on reexpressing
these as discrete convolutions, allowing iterations to occur at FFT-cost after a one-time precomputation. We will give
the details of these accelerated algorithms for the adjoint and normal operators in future work.

3.2. Slice-by-slice

To frame slice-by-slice reconstruction in the same framework, we set the discretization kernel to be an isotropic KBW
in the x0x1 plane multiplied by a box in the x2 direction. As a result, the data fit term in (1) separates along x2 such
that each row of g corresponds to only a single slice of c. We then set the regularization term Ψ(c) to be the 2D TV in
the x0x1 plane. Thus the entire optimization problem splits into a set of 2D problems, which we solve independently
via standard ADMM iterations.

The main differences between the slice-by-slice and fully 3D methods are therefore that (1) the regularization
in the slice-by-slice method is computed only within and not between slices and (2) the discretization kernel in the
slice-by-slice method is anisotropic.

4. Experimental Validation

We now compare the slice-by-slice and fully 3D methods using data from an analytical phantom comprised of el-
lipsoids. Specifically, we use nine of the ellipsoids from the 3D version of the Shepp-Logan phantom [12]: the ten
corresponding to the original 2D Shepp-Logan phantom minus the skull. We generate a sinogram from this phantom
by computing X-ray projections analytically on a 601 × 401 grid for 1,1201 angles spaced evenly from 0 to π , inclu-
sive, around the x2 (vertical) axis. We then add zero-mean Gaussian noise to the sinogram so that the signal-to-noise
ratio (SNR) is -10dB. This phantom is piecewise constant and therefore a good fit for TV regularization.

To evaluate the robustness of the methods to missing projection angles, we create downsampled versions of the
sinogram containing 1201, 301, 101, 51, 26, and 13 projections. For each of these sinograms and for each method, we
compute a 161×161×101 reconstruction for a range of 8 different regularization strengths, λ = 0,a21,a22, . . . ,a27

with a chosen experimentally to cover the range between too little and too much regularization. We compute an SNR
for each of these reconstructions using the analytical values of the phantom as the oracle and report the SNR for the
unregularized and the best of the regularized reconstructions.

The results are shown in Figure 1. For both methods decreasing the number of views reduces the SNR and regular-
ization greatly improves the SNR. When the number of views is high, the regularized methods perform similarly well,
however, in the unregularized case, the fully 3D method gives an improvement of 3.5dB over the slice-by-slice. This
underscores that the difference between the methods is not only the 3D regularization, but also the different discretiza-
tion kernels. In this example, the isotropic discretization kernel of the fully 3D method offers beneficial smoothing
that helps remove noise in the absence of regularization.

As the number of views decreases, the gap between the regularized methods increases, which suggests that the fully
3D regularization better handles low-view artifacts. Qualitatively, the difference is most apparent in the x1x2 cross
section, where the slice-by-slice method shows significant variability between slices.

The results suggest that fully 3D reconstruction is superior to slice-by-slice reconstruction, even when the problem
naturally decomposes into a set of slices. This difference rests on the fact that fully 3D reconstruction allows the
regularization to use information from vertically adjacent slices to reduce noise. Fully 3D reconstruction is a good
choice when noise is high and the number of views is low, which corresponds to the low X-ray dose regime. When the
desired reconstruction does not fit in memory or when the reconstruction cannot benefit from fully 3D regularization,
slice-by-slice reconstruction remains the better alternative. In our future work, we will validate this method on real
datasets, including differential phase contrast measurements, and provide the details of our algorithms for accelerating
the reconstruction.
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Fig. 1. (a) Reconstruction quality versus number of views for the slice-by-slice and fully 3D recon-
struction methods. (b and c) Representative slices for each with 101 views in the x0x1 (left) and x1x2
(right) cross sections. Slice-by-slice reconstruction results in jitter between slices.
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