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ABSTRACT

To assist neurobiologists investigating the molecular mech-
anisms involved in neurite formation and differentiation, we
have developed an interactive technique for the tracing and
quantification of elongated image structures. The technique
is based on an improved steerable filter for computing local
ridge strength and orientation. It also uses a graph-searching
algorithm with a novel cost function exploiting these image
features to obtain globally optimal tracings between user-
defined control points. To compare the performance of the
technique to that of the currently used approach of fully
manual delineation, four observers traced selected neurites
in fluorescence microscopy images of cells in culture, us-
ing both methods. The results indicated that the proposed
technique yields comparable accuracy in measuring neurite
length, significantly improved accuracy in neurite center-
line extraction, significantly improved reproducibility and
reduced user interaction.

1. INTRODUCTION

The development of the nervous system is an intricate pro-
cess involving many different factors. Studies into the mo-
lecular mechanisms regulating neurite formation and differ-
entiation often involve extensive image analysis. A task of
particular importance is the tracing and quantification of the
neurites emanating from the cell body, which is often done
by tedious manual delineation. In the past decade, only a
handful of more advanced neurite tracing techniques have
been published. Recent examples, developed for 3D confo-
cal microscopy image stacks, are based on vectorial track-
ing [1] and multiscale feature analysis [2].

In this paper we are concerned with 2D fluorescence mi-
croscopy images of individual cells. Whereas the computa-
tional cost of neurite tracing can be expected to be smaller
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in 2D than in 3D, the task is hampered by ambiguities due
to the crossing of neurites. In addition, neurites may have
very low contrast or contain gaps. And when compiled from
several scans, the images may show background intensity
discontinuities or gradients (Fig. 1). Procedures based on
thresholding [3,4] are likely to fail in such cases. Some au-
thors have resorted to heuristic approaches [5,6]. Another
recently published technique [7] was successfully applied
to images of retinal explants, but does not address the men-
tioned problems seen in our type of images.

Based on these facts, we conclude that there is still a
great need for image analysis tools facilitating neurite trac-
ing. The design of fully automated tracing techniques will
remain a difficult problem, however, and it seems likely that
some form of user interaction will always be required to
resolve ambiguities. In this paper we describe a novel, in-
teractive neurite tracing technique and present the results
of validation experiments revealing its performance com-
pared to fully manual delineation, in terms of accuracy, re-
producibility, and required user interaction.

2. TECHNIQUE

Neurite tracing using our technique consists of (i) a detec-
tion phase and (ii) a linking phase. The detection algorithm
is based on the fact that in the images, neurites are bright,
elongated structures superimposed on a dark, noisy back-
ground. It is known [8, 9] that such structures are well an-
alyzed by second-order operators. Improving on existing
approaches, we compute for every pixel x in the image

H',;(x) =Hpg(x) + oR! JHpo(x)R. 0, (1)

where H .o denotes the Hessian of the Gaussian-smoothed
version of the image, and R, ,, the matrix representing a
rotation with angle /2. Computing the eigenvalues of (1)
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Fig. 1. Part of a fluorescence microscopy image showing a hippocampal neuron in culture. The image was compiled from different scans
to capture all of the neuron’s outgrowth. It illustrates the different problems encountered in neurite tracing, such as ambiguities caused by
the branching or crossing of neurites (as in the regions indicated by ‘A’), background intensity discontinuities or gradients (as in regions

‘B’), and varying or even discontinuous neurite contrast (compare regions ‘C’).

is equivalent to computing the maximum and minimum re-
sponse to the steerable filter r(,T -HY, - ry, with ry the unit
vector in direction §. Taking & = —1/3 in (1) implies a
filter (Fig. 2) that is maximally flat in the direction 6 + 7 /2.
As a measure of neurite strength we then compute

A Amin i A(x) <0,
pix) = {0 it A(x) >0, &

where )\ is the larger in magnitude of the two eigenvalues
and \p,i, denotes the smallest A over all pixels. Also stored
for each pixel is the local neurite orientation as indicated by
v, the normalized eigenvector corresponding to the smaller
absolute eigenvalue (Fig. 3). Since the Gaussian kernel in-
volved in the computations is a scalable function, with scale
parameter o, the detector is tunable to neurites of specific
width, while it also suppresses noise.

For the linking of consecutive pixels we have adopted
the live-wire segmentation paradigm [10,11]. The new func-
tion that we propose to compute the cost of moving from
any pixel x to an eight-connected pixel y is

C(X? y) = PYC)\(y) + (1 - W)Cv(xv y)v (3)

where v € [0,1] is a parameter determining the relative
weight of the two normalized cost components, Cy and C,,.
The former of these is computed from the eigenvalues as

Caly) =1-p(y), )

and the latter from the eigenvectors as

Cu(x,y) =3 {\/1 —p(x,y) +/1 —«p(y,X)}, )
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Fig. 2. Shape of the steerable ridge filter rZ - Hf; - ro implicitly
used in the neurite detection algorithm. The filter, depicted here as
an inverted landscape, is more elongated than the filter normally
found in the literature on ridge detection.

where p(x,y) = |v(x) - d(x,y)|, with d(x,y) the unit
vector in direction y — x. Optimal paths based on this cost
function are computed by a fast implementation of Dijk-
stra’s shortest-path algorithm [10, 11]. The placing of start-
ing points is facilitated by applying “local snapping” in a
small window of w x w pixels around the actual cursor po-
sition. Smooth tracings (Fig.4) are obtained by application
of a uniform postfilter, of size 2p+1, to the path pixel coor-
dinates, followed by subsampling with a factor s.

3. VALIDATION

After initial experimentation with the technique, the differ-
ent parameters were fixed to 0 = 2.0, v = 0.7, w = 9,
p = 5, and s = 5. The technique was compared to fully
manual tracing with a standard piecewise straight-line draw-
ing technique. For the validation we selected 20 represen-
tative cell images from a previous study [12]. Four observ-
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Fig. 3. Output of the neurite detection algorithm applied to the image in Fig. 1. The left image shows for every pixel the local neurite
strength. The right image shows the computed local neurite orientations (superimposed white dashes) for the region indicated by the
right-most ‘A’ in Fig. 1. Due to the use of second-order image features, the algorithm suppresses background intensity discontinuities and
gradients. In addition, it is tunable to neurites of specific width and reduces the influence of noise.

ers independently traced selected neurites three times using
both techniques. The motto was to minimize the number
of mouse clicks while attaining sufficient tracing accuracy,
according to the observers’ own visual judgment. The ac-
curacy of the tracings was determined by comparison with
reference tracings, obtained by manual delineation in very
high-resolution versions of the images, where the observers
were asked to be as accurate as possible, regardless of the
number of clicks required. Two different error measures
were used: length difference and average deviation. For
each of the tracings, the values for the two error measures
were computed for each of the observers’ corresponding
reference tracing, and the resulting four error values per
measure were averaged to yield a consensus error for that
measure. The variability in the consensus errors was com-
puted both per observer and between observers. Finally,
the labor intensiveness of our technique versus fully manual
tracing was analyzed by comparing the number of mouse
clicks required per tracing. The statistical significance of
the outcome of all comparisons was determined by means
of a two-sided paired Student ¢-test, under the null hypothe-
sis that the two techniques would give similar results.

4. DISCUSSION

From the results (Fig. 5) we observe that our semiautomatic
neurite tracing technique yields a significant improvement
over fully manual tracing methods in terms of true neurite
centerline representation, reproducibility, and reduced user
interaction. Adding the observation that the two perform
comparably in the case of length measurements, we con-
clude that our technique may replace the latter. Due to the
use of a global optimization algorithm and second-order im-
age feature analysis, it is very robust against noise, back-

Fig. 4. Sample tracings (superimposed white curves) obtained
with the described technique. The images show the results for the
regions indicated by the right-most ‘A’ (left image) and the lower
‘C’ (right image) in Fig. 1 and demonstrate the power of the tech-
nique even in the case of poor neurite contrast.

ground intensity discontinuities or gradients, and varying
or even locally diminishing neurite contrast. As a result it
can be applied to a wide range of images without chang-
ing its parameters. The number of parameters to be set by
the user is small. A disadvantage of the technique is that it
still requires user interaction, which limits its applicability
to images containing manageable amounts of neurites only.
The challenge for future research will be, therefore, to fur-
ther automate the process by computing landmarks to serve
as input for the optimization algorithm. A logical approach
would be to choose high-curvature and branch points for
this purpose. In the meantime, the technique is already be-
ing applied successfully in our institutes.
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Fig. 5. Results of the validation experiments comparing fully manual tracing (solid bars) and the described semiautomatic tracing technique
(dotted bars). The graphs show the observed values for the length difference (1) and the average deviation (¢ p) measure, the intraobserver
variability for both measures (VAR%ra and VARii’fra), the interobserver variability for both (VAR%er and VARii%r), and the amount of user
interaction required. The bars show the full range of observed values (with the black circles indicating the mean values) separately for
each of the observers (O1-O4). The asterisks on top of each graph indicate for each observer the probability for the null hypothesis of
equivalence to be true based on the data presented. The different levels of probability considered are p < 0.001 (¥*%), p < 0.01 (*%),

p < 0.05 (*), and any probability larger than 0.05 (no asterisk).
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