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‘ Overview
0SS

B-splines: the right tool for interpolation
fundamental properties
spline fitting
* interpolation; smoothing; least-squares
guantitative approximation quality
A primer to the wavelet transform

multi-resolution, semi-orthogonal wavelets

2-D extension: hex-splines on any regular periodic lattice

hexagonal versus Cartesian lattice
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‘ Notations
(m ]}

one-sided

Fourier transform

Z-transform

(z)+ = max(0, )



Polynomial splines
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s(z) is a polynomial spline of degree n with knots

e <D < T < ... ff
Piecewise polynomial (of degree n) within each interval [a:k, ka[
Higher-order continuity at the knots of  d*s

dxz.,'é:O,...,n—l
Effective degrees of freedom is 1
“Cardinal splines™
Unit spacing: =, =k !

o number of knots



Polynomial B-splines
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B-spline of degree n
B (x) = B % B % B ()

N

(n + 1) times

Symmetric B-spline

B (x) = B (‘T’ T n:zH)
Key properties

compact support

piecewise polynomial
positivity
smoothness (continuity)

(0, otherwise.

.ﬂ(.z:){ I, zel0,1)

[Schoenberg, 1946]
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-spline representation
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The link between continuous and discrete

s(x) = D _clk] B3 (x — k)

keZ
analog signal in the B-spline coefficients
continuous domain In the discrete domain
4 Cubic spline : Basis
(n=3) 0.8 functions

0.6
e 0.4 ‘
1 0.2




‘ Fundamental B-spline properties

VIS oS
Partition of unity t and of polynomials
reproduction of the constant up to degree n
Riesz basis

stability: small perturbation of coefficients results into small change
of spline signal

unambiguity. each representation is unique

m-scale relation (for m integer)

m—1 n+l
1 .,
B (x/m) th |3"(x — k) with H] (z) = " (Z z_">

keZ k=0
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-spline Fourier expression
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B
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B (x) = 3 % B9 * - x 5] ()

!

Fourier transform of basic element:

] L 5-1- ﬁ+(W) w/z € jw
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e -spline differential property

B
a2
“poor man’s derivative” (finite difference)

. 1o\ Af=f@)-flz—1) o (1—e9)f
@ = ()

exact derivative

Df < (jw)f

Link between discrete and exact derivatives

D™s=D" {cx T} = A" exgrm™

discrete spline degree
filtering reduction



‘ Generalized fractional B-splines
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Definition in the Fourier domain

a+1 a+1

Ao 1—efw\ 2 T /1—edw\ 2z 7
/6’7‘ (CU) — . . degree o € R4
_,]w ]w shift TeR

Fractional B-spline of degree 0 [Unser & Blu 2000,
Blu & Unser 2003]
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Spline fitting
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How to find the spline coefficients?

s(x) = clk] Btz — k)

keZ



‘ Spline fitting: (1) spline interpolation
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Spline interpolation (exact, reversible)

discrete input f[k] such that

> filtering — c[k] $(x)|p=r = f[K]

Smoothing spline
Least square splines (approximation between spline spaces)



‘ Spline interpolation
—
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Discrete B-spline kernels |
|n/2] N
bk =B @ = Bl = Y Bk S [
k=—|n/2] ol .

Satisfying interpolation condition: inverse filter!

FIR] =) ell]B™ (& = D)]a=r = (b7 * ¢)[k] = c[k] = (b1) ™" * f[K]
Eﬁicieé%zrecursive implementation:

cascade of causal and anti-causal filters
e.g., cubic spline interpolation
6 (1—a)®
r+4+21 (1—az)(l—az )
anti-causal causal

O K




i Spline interpolation
(]}

Generic C-code

main recursion

void ConvertToInterpolationCoefficients ( double c[ ], long Datalength, double z[ ], long NbPoles, double

Tolerance)
{
double Lambda = 1.0; long n, k;
if (Datalength == 1lL) return;
for (k = OL; k < NbPoles; k++)
Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[k]):
for (n = OL; n < Datalength; n++) c[n] *= Lambda;
for (k = OL; k < NbPoles; k++) {
c[0] = InitialCausalCoefficient(c, DatalLength, z[k], Tolerance) ;
for (n = 1L; n < Datalength; n++) c[n] += z[k] * c[n - 1L];
c[Datalength - 1L] = (z[k] / (z[k]*z[k] - 1.0)) * (z[k]*c[Datalength - 2L] + c[DatalLength - 1L]);
for (n = Datalength - 2L; 0 <= n; n--) c[n] = z[k] * (c[n + 1L]- c[n]);
}
}
initialization

double InitialCausalCoefficient ( double <c[ ], long Datalength, double z, double Tolerance)
{

double Sum, zn, z2n, iz; long n, Horizon;

Horizon = (long)ceil (log(Tolerance) / log(fabs(z)));

if (Datalength < Horizon) Horizon = Datalength;

zn = z; Sum = c[0];

for (n = 1L; n < Horizon; n++) {Sum += zn * c[n]; zn *= z;}

return (Sum) ;



é Spline interpolation
oS

Interpolating or fundamental B-spline

s(x) = Z clk]f"(x — k) = Z (s(k) = (b7) ' [K]) 8™ (x — k)

kEZ kEZ

> s(k)h(z — k)

keZ

P () = D (07) MK 8" (2 — k)

keZ




é Spline interpolation
(m ]

The fundamental spline converges to sinc as the degree goes to infinity

1 =

lim ¢, (x) = sinc(x) )
1
, sin(w/2)\ " 1 w
1 : — t <_> 0.5
ninéo( w2 ) Br(eiwy O \27
0.5 1 1.5

Shannon’s theory appears as a particular case



éos Spline fitting: (2) smoothing spline

Spline interpolation
Smoothing spline

discrete and :
subject to

fitering — c|k] regularization

noisy input s
f|k] = s[k] 4 nlk]

Least square splines (approximation between spline spaces)
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‘ Smoothing spline
S

The solution (among all functions) of the smoothing spline problem

400
min ¢ » | f[k] +)\/ D™ s(z)|? dz
s(x) kc? —00
is a cardinal spline of degree 2m-1. Its coefficients can be obtained by

suitable digital filtering of the input samples:

Related to: MMSE (Wiener filtering); splines form optimal space!!!

Special case: the draftman’s spline
Minimum curvature interpolant is obtained for m = 2, A — 0
= cubic spline!

[Unser & Blu 2005; Ramani et al. 2005]



‘ Spline fitting: (3) least-square spline
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Spline interpolation
Smoothing spline
Least-square spline (approximation between spline spaces)

li del
spline msl[:] 81($)> resampling & filtering i 82(33)




‘ Least-square spline
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Minimize quadratic error between splines

— ' _ with 51(®) =2z a1kl (z — k)
{CFG [k]} arg {gj[lﬁ} Hsl SI‘CHLQ th Sm(x) _ Ziei Cn[k]ﬂn(x/ﬁ _ k’)

determineci[k] ; e.g., by spline interpolation(b7) "

resample using
dulk] = 3 erl)En (ko — 1 with €2(z) = — (8°() * 8"(-/)) (x)

€7,
obtain samples of new spline representation

sulk] = (de % (B3 T [K]

s1(k) . c1[k] . d;c K] : s (k)
e prefiter —> resampling —  postfilter —

[Unser et al. 1995]
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Least-square spline
VIS
(-
Special case: “surface projection”
first-order B-splines on source and target grid
weight of sample = overlap between B-splines’ support




‘ Quantitative approximation quality
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Best approximation in a space?
analysis function at scale a

> filtering & sampling — clk] = (f, o(-/a — k))
=Y cklp(z/a— k)

analog input f ()

k€EZ
Orthogonal projection m%/Ii | f — SHLZ
—I—oo 5 Results for:
Hf—SHL2 —/ (w)‘ E(aw)dw - Fixed scale
 Asymptotically

with error kernel F(w) =1 —

[Blu & Unser 1999]



Quantitative approximation quality
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[Thévenaz et al. 2000]



B-spline interpolation in 2D
VIS

2D separable model
ki+n+1li+n+1

(z,v) Z Z B (x—1) " (y — 1) i

k=k, =1,

Geometric transformations

Applications

zooming, rotation, resizing, warping
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High-quality image interpolation

35 4
) Bspline(6)
30 — Bspline(5)
i Bspline(4)
1 Bspline(3)
7 Bspline(2)
25 Schaum(2) [1993] Meijering(7) [1999]
- Keys [1981] Meijering(5) [1999]
i Schaum(3) [1993]
Dodgson [1997]
20 —
| Linear
Sinc Hamming(4)
Nearest-neighbor
T German [1997]
15 —
| | | | | 1 1 |
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Execution time (s rot )

cost

[Thévenaz et al. 2000]



é Interpolation benchmark

o5

Cumulative interpolation experiment:
the best algorithm wins...

bilinear windowed sinc cubic spline



éos High-quality isosurface rendering

» 3D B-spline representation of volume data

» |sosurface
analytical knowledge of normal vectors

&

iy
-~ -

P

[Thévenaz et al. 2000]



‘ Multi-resolution approximation
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m-scale relation

1 m—1 n+l
/ kl/ > — —k
B (x/m) th |3"(x — k) with H] (z) = " (Z z )

keZ k=0

Pyramid or tree algorithms (m = 2*)
fast evaluation of (f(-) x 87(-/2")) (k)

2 n=1

binomial filter
1 1
for high n ~ Gaussian filter ><><




‘ Wavelets
=
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Admissible scaling function (“father wavelet”)
Riesz basis conditions
partition of unity

two-scale relation

B-splines are perfect candidates

Then there exists a wavelet ¥(z/2) = glklo(z —
_i/2 2% keZ
such that {27 (*7 )}

forms a Riesz basis of L,

[Mallat-Meyer 1989]



é Haar wavelet transform revisited

o5
4 30(5’7) Signal representation
k
| basis function: r
N + ()
2 4 6 8
: s1(x)

1 » Multi-scale signal representation
S L I si(x) = Zczkgpzk(a:)

3 multi-scale basis function:

2 r — 2k
1 Pi,k(T) = ¢ ( i )
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‘ Haar wavelet transform revisited
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(\/‘ Semi-orthogonal wavelets

» Scaling and wavelet spaces

Vi = span,ez{y (5 —n)
W, = span,y

» Semi-orthogonality conditions

1. Wz C Vz’_l
2. W; LV,
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orthogonal cubic B-spline wavelet
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Wavelets
(=

Wavelets act as differentiators

Effect on transient
features:

1 1) locality

2) sparsity

1 (vanishing moments)



‘ Wavelets and differentiation
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Fundamental property:
multiscale differentiator

Y(w) x |w|”  when w — 0
Responsible for
vanishing moments
decorrelation

Very successful for coding applications
JPEG2000
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‘ Hexagonal lattices
(w2}

lattice matrix: R = [rq 79]

Voronoi cell =
“best” tessellation:

» Six equivalent neighbours
» Twelve-fold symmetry
» High isotropy

" Bee-splines?




Hex-splines
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» Basis functions for hexagonal grids

First order




Hex-splines
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» Basis functions for hexagonal grids

r

Second order




‘ Hex-splines

VIS oS

» Basis functions for hexagonal grids

Third order




‘ Hex-splines

VIS oS

» Basis functions for hexagonal grids

o

Fourth order




é Hex-splines
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B-spline-like construction algorithm:
generating functions (~ differentiation operator in 3 directions)
localization operators (~ discrete versions of the operators)
B-spline-like properties:
convolution property (by construction)
positivity, partition of unity, compact support
convergence to Gaussian

Hex-splines exist for all periodic lattices
coincide with separable B-splines for cartesian lattice

Fitting: interpolation, smoothing, least-squares
But...

no two-scale relation



‘ Hex-splines versus B-splines
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()

Keep sampling density equal: det(R)=Q

Hex-splines on B-splines on
hexagonal grid orthogonal grid
A A

M r




‘ Hex-splines versus B-splines
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Extra samples so approximation quality B-splines equals
that one of hex-splines (asymptotical result)

1.7

pew _ 8T

2743

1.6884 <

-
(ea}
>
Q
q%
C

P

B

'
13
o 1
s o
A °
- as
18 -1
A -3
Y 2

2L 2L+1
=C- ||°‘J||L2 + O(”WHL2 )

sampling gain (surface area)
\

o

-
[y

—

[Van De Ville et al. 2005]



‘ Hex-splines versus B-splines
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Classical result:
isotropic band-limited signals are better approximated on hexagonal
lattices [Mersereau, 1979]

Here, result for non-bandlimited signals
first order (nearest neighbor) on hexagonal lattices does not pay

at least second order (linear-like) hex-splines should be used;
second-order still have easy analytical characterization
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‘ Conclusions
0SS

B-splines are a great tool for interpolation and

approximation: link continuous and discrete!
short support; analytical expression; tunable degree
fundamentally linked to differential operators

Shift-invariant spaces due to uniform sampling brings along
fast algorithms (filtering, FFT-based,...)
powerful theoretical results (error kernel)

Multi-resolution
m-scale relation for pyramids and wavelets

Multi-dimensional extensions and variations
tensor-product, hex-splines, box-splines (see later)



‘ And finally
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» Many thanks go to
Michael Unser Thierry Blu Philippe Thévenaz

» Papers, demonstrations, source code:
http://bigwww.epfl.ch/

» The Wavelet Digest: (22000+ subscribers)
http://www.wavelet.org/

© Annette Unser





