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Overview

➤ B-splines: the right tool for interpolation
• fundamental properties

• spline fitting

• interpolation; smoothing; least-squares

• quantitative approximation quality

➤ A primer to the wavelet transform
• multi-resolution, semi-orthogonal wavelets

➤ 2-D extension: hex-splines on any regular periodic lattice
• hexagonal versus Cartesian lattice
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Notations

➤ one-sided

➤ Fourier transform

➤ Z-transform
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Polynomial splines

➤           is a polynomial spline of degree n with knots
                                                  iff
• Piecewise polynomial (of degree n) within each interval
• Higher-order continuity at the knots of

➤ Effective degrees of freedom is 1
➤ “Cardinal splines”:

• Unit spacing:
• ∞ number of knots
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➤ B-spline of degree n

➤ Symmetric B-spline

➤ Key properties
• compact support
• piecewise polynomial
• positivity
• smoothness (continuity)

Polynomial B-splines

[Schoenberg, 1946]
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➤ The link between continuous and discrete

analog signal in the
continuous domain

B-spline coefficients
in the discrete domain

B-spline representation
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Fundamental B-spline properties

➤ Partition of unity
• reproduction of the constant

➤ Riesz basis
• stability: small perturbation of coefficients results into small change

of spline signal

• unambiguity: each representation is unique

➤ m-scale relation (for m integer)

and of polynomials
up to degree n
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B-spline Fourier expression

Fourier transform of basic element:
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B-spline differential property

➤ Link between discrete and exact derivatives

“poor man’s derivative” (finite difference)

exact derivative

discrete
filtering

spline degree
reduction



10

Generalized fractional B-splines

➤ Definition in the Fourier domain

[Unser & Blu 2000,
Blu & Unser 2003]
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Spline fitting

➤ How to find the spline coefficients?
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Spline fitting: (1) spline interpolation

➤ Spline interpolation (exact, reversible)

➤ Smoothing spline
➤ Least square splines (approximation between spline spaces)

filtering
discrete input such that
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Spline interpolation

➤ Discrete B-spline kernels

➤ Satisfying interpolation condition: inverse filter!

➤ Efficient recursive implementation:
• cascade of causal and anti-causal filters

• e.g., cubic spline interpolation

anti-causal causal



14

Spline interpolation

➤ Generic C-code
• main recursion

• initialization

void ConvertToInterpolationCoefficients ( double c[ ], long DataLength, double  z[ ], long NbPoles, double  Tolerance)
{

double Lambda = 1.0; long n, k;
if (DataLength == 1L) return;
for (k = 0L; k < NbPoles; k++)

Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[k]);
for (n = 0L; n < DataLength; n++) c[n] *= Lambda;
for (k = 0L; k < NbPoles; k++) {

c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance);
for (n = 1L; n < DataLength; n++) c[n] += z[k] * c[n - 1L];
c[DataLength - 1L] = (z[k] / (z[k]*z[k] - 1.0)) * (z[k]*c[DataLength - 2L] + c[DataLength - 1L]);
for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[k] * (c[n + 1L]- c[n]);

}
}

double  InitialCausalCoefficient ( double  c[ ], long DataLength, double  z, double  Tolerance)
{

double Sum, zn, z2n, iz; long n, Horizon;
Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));
if (DataLength < Horizon) Horizon = DataLength;
zn = z; Sum = c[0];
for (n = 1L; n < Horizon; n++) {Sum += zn * c[n]; zn *= z;}
return(Sum);

}
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Spline interpolation

➤ Interpolating or fundamental B-spline
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Spline interpolation

➤ The fundamental spline converges to sinc as the degree goes to infinity

➤ Shannon’s theory appears as a particular case
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Spline fitting: (2) smoothing spline

➤ Spline interpolation
➤ Smoothing spline

➤ Least square splines (approximation between spline spaces)

filtering
discrete and
noisy input subject to

regularization
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Smoothing spline

➤ The solution (among all functions) of the smoothing spline problem

is a cardinal spline of degree 2m-1. Its coefficients can be obtained by
suitable digital filtering of the input samples:

➤ Related to: MMSE (Wiener filtering); splines form optimal space!!!

➤ Special case: the draftman’s spline
Minimum curvature interpolant is obtained for
= cubic spline!

[Unser & Blu 2005; Ramani et al. 2005]



19

➤ Spline interpolation
➤ Smoothing spline
➤ Least-square spline (approximation between spline spaces)

Spline fitting: (3) least-square spline

resampling & filtering
spline model

such that

error
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Least-square spline

➤ Minimize quadratic error between splines

1. determine         ; e.g., by spline interpolation
2. resample using

3. obtain samples of new spline representation

prefilter resampling postfilter

with

with

[Unser et al. 1995]
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Least-square spline

➤ Special case: “surface projection”
• first-order B-splines on source and target grid
• weight of sample = overlap between B-splines’ support

1-1
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➤ Best approximation in a space?

➤ Orthogonal projection

with error kernel

filtering & sampling
analog input

analysis function at scale a

[Blu & Unser 1999]

Quantitative approximation quality

Results for:
• Fixed scale
• Asymptotically
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[Thévenaz et al. 2000]

fixed support W=4

Quantitative approximation quality
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B-spline interpolation in 2D

➤ 2D separable model

➤ Geometric transformations

➤ Applications
• zooming, rotation, resizing, warping

2D filtering 2D resampling
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High-quality image interpolation

[Thévenaz et al. 2000]cost
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Interpolation benchmark

➤ Cumulative interpolation experiment:
the best algorithm wins…

bilinear               windowed sinc              cubic spline
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➤ 3D B-spline representation of volume data
➤ Isosurface

• analytical knowledge of normal vectors

[Thévenaz et al. 2000]

High-quality isosurface rendering
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Multi-resolution approximation

➤ m-scale relation

➤ Pyramid or tree algorithms (          )
• fast evaluation of

• for high n ~ Gaussian filter

binomial filter n=1
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Wavelets

➤ Admissible scaling function (“father wavelet”)
• Riesz basis conditions

• partition of unity

• two-scale relation

➤ B-splines are perfect candidates

➤ Then there exists a wavelet
such that
forms a Riesz basis of L2

[Mallat-Meyer 1989]
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Haar wavelet transform revisited

➤ Signal representation

basis function:

•  Multi-scale signal representation

   multi-scale basis function:
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Haar wavelet transform revisited

+
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+
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Wavelet:



32

Semi-orthogonal wavelets

➤ Scaling and wavelet spaces

➤ Semi-orthogonality conditions
1.
2.
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1) locality

Effect on transient
features:

2) sparsity
(vanishing moments)
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Wavelets

➤ Wavelets act as differentiators
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Wavelets and differentiation

➤ Fundamental property:
multiscale differentiator

➤ Responsible for
• vanishing moments
• decorrelation

➤ Very successful for coding applications
• JPEG2000
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r1

r2

Hexagonal lattices

Voronoi cell =
“best” tessellation:

➤ Six equivalent neighbours
➤ Twelve-fold symmetry
➤ High isotropy

lattice matrix:

Bee-splines?



36

Hex-splines

➤ Basis functions for hexagonal grids

First order
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Hex-splines

➤ Basis functions for hexagonal grids

Second order



38

Hex-splines

➤ Basis functions for hexagonal grids

Third order
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Hex-splines

➤ Basis functions for hexagonal grids

Fourth order
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Hex-splines

➤ B-spline-like construction algorithm:
• generating functions (~ differentiation operator in 3 directions)
• localization operators (~ discrete versions of the operators)

➤ B-spline-like properties:
• convolution property (by construction)
• positivity, partition of unity, compact support
• convergence to Gaussian

➤ Hex-splines exist for all periodic lattices
• coincide with separable B-splines for cartesian lattice

➤ Fitting: interpolation, smoothing, least-squares
➤ But…

• no two-scale relation
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Hex-splines on 
hexagonal grid

r1

r2

B-splines on
orthogonal grid

r1

r2

Hex-splines versus B-splines

➤  Keep sampling density equal: det(R)=Ω
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Hex-splines versus B-splines

➤ Extra samples so approximation quality B-splines equals
that one of  hex-splines (asymptotical result)
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Hex-splines versus B-splines

➤ Classical result:
• isotropic band-limited signals are better approximated on hexagonal

lattices [Mersereau, 1979]

➤ Here, result for non-bandlimited signals
• first order (nearest neighbor) on hexagonal lattices does not pay
• at least second order (linear-like) hex-splines should be used;

second-order still have easy analytical characterization
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Conclusions

➤ B-splines are a great tool for interpolation and
approximation: link continuous and discrete!
• short support; analytical expression; tunable degree
• fundamentally linked to differential operators

➤ Shift-invariant spaces due to uniform sampling brings along
• fast algorithms (filtering, FFT-based,…)
• powerful theoretical results (error kernel)

➤ Multi-resolution
• m-scale relation for pyramids and wavelets

➤ Multi-dimensional extensions and variations
• tensor-product, hex-splines, box-splines (see later)
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And finally

➤ Many thanks go to
Michael Unser Thierry Blu Philippe Thévenaz

➤ Papers, demonstrations, source code:
http://bigwww.epfl.ch/

➤ The Wavelet Digest: (22000+ subscribers)
http://www.wavelet.org/

© Annette Unser




