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ABSTRACT

We propose a semi-automatic technique to segment corpus
callosum (CC) using a two-stage snake formulation: A re-
stricted affine transform (RAT) constrained snake followed
by an unconstrained snake in an iterative fashion. A statis-
tical model is developed to capture the shape variations of CC
from a training set, which restrict the unconstrained snake to
lie in the shape-space of CC. The geometry of the constrained
snake is optimized using a local contrast-based energy over
RAT space (which allows for five degrees of freedom). On
the other hand, the unconstrained snake is optimized using a
unified energy (region, gradient, and curvature energy) for-
mulation. Joint optimization resulted in increased robustness
to initialization as well as fast and accurate segmentation. The
technique was validated on 243 images taken from the OASIS
database and performance was quantified using Jaccard’s dis-
tance, sensitivity, and specificity as the metrics.

Index Terms— Corpus callosum segmentation, active
contour model, shape-specific snake, contrast-based energy.

1. INTRODUCTION

Corpus callosum (CC) is a broad, transverse neural path-
way in the mammalian brain, which serves as a connec-
tion between the two cerebral hemispheres [1]. There is
a vast body of literature in neurobiology that connects its
morphological features such as shape and size to sexual
dimorphism [2], handedness [2], and pathologies such as
dyslexia [3], schizophrenia [4], autism [5], epilepsy [6], and
multiple sclerosis [7]. Therefore, finding the anatomical
features of CC forms an important stage in diagnosis. For
imaging the brain, Magnetic Resonance Imaging (MRI) is
preferred as it provides better contrast between different soft
tissues than traditional radiography or computed tomogra-

phy [8].
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Snakes are a popular image segmentation tool [9], which
grow from a specific initialization and converge on to bound-
ary of interest under the influence of certain image and inter-
nal forces. Image forces (typically region and gradient en-
ergy) direct the contour to the boundary of interest, and inter-
nal forces ensure a certain degree of smoothness or regular-
ity to the curve. Since their introduction by Kass et al. [9],
many modifications have been proposed in snake design, the
novelty of which generally lies in specification of curve repre-
sentation and suitable energies. Curve representations such as
B-splines [9, 10], Fourier descriptors [11], wavelets [12], etc.
have been developed to solve specific segmentation problems.
B-splines, in particular, are inherently smooth, have compact
support, and provide local control, which make them a pop-
ular choice for medical image segmentation. Previous work
on segmentation incorporating shape information in the B-
spline framework include [13, 14]. In our problem, CC has
a distinguishable shape that makes it a suitable candidate for
incorporating shape information into the segmentation algo-
rithm [15, 16]. On the energy front, many techniques rely
on region-and gradient-based energies or functions derived
thereof [17]. Recently, Thévenaz and Unser [18, 19] proposed
a new contrast-based energy for optimizing concentric circles
and ellipses. The contrast is defined between the pixel inten-
sities inside the inner contour and those lying in the annular
region between the inner and outer contours. In a T1-weighed
sagittal plane MR image of the brain, CC can be seen as a light
gray non-convex structure locally brighter than its surround-
ings. The contrast between CC and surrounding regions has
motivated us to use contrast energy for our snake formulation.

In this paper, we propose a hybrid strategy that combines
a shape-specific parametric snake optimized over affine space
followed by an unconstrained parametric snake optimization.
The unconstrained snake deformation is monitored every few
iterations and is restricted to lie in the shape-space of the CC.
The segmentation comprises two major stages:

1. Affine-space optimization: In this stage, a snake con-
sisting of a nested template is parameterized using cu-
bic B-splines (called a B-snake) [13]. The snake is
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manually initialized and is allowed to deform in the
RAT space of the template. The snake energy used is
the contrast-based energy introduced in [18, 19]. This
stage results in a coarse but fast segmentation. The de-
tails are given in Section 2.1 .

2. Shape-space optimization: The converged snake from
the first stage is used as an initialization for a unified-
energy (gradient, curvature, and region energies) snake
[10], which refines the segmentation. This snake is pe-
riodically projected on to the shape-space of CC every
few iterations (100 in the experiments reported) and re-
stricted to lie within it.

If the snake in stage 2 converges within a predefined num-
ber of iterations, the process is deemed complete. Otherwise,
a new template is derived from stage 2 and used in stage 1 as
initialization (automatic), the two stages are repeated until the
process is complete.

The rest of the paper is organized as follows. In Section 2,
we present the details of our proposed algorithm with associ-
ated background materials, which we follow up with segmen-
tation results in Section 3. In Section 4, we present conclusion
and scope for extending the proposed technique.

2. PROPOSED FORMULATION

2.1. Affine-space snake formulation

In the first stage, we use a deformable template-based seg-
mentation approach, utilizing a contrast-based energy for
optimization. The deformable template consists of a pair
of nested contours and allowed to move in the template’s
RAT space. Thévenaz and Unser [18, 19] employed a shape-
specific parametrization and regularization to maintain shape
specificity. In [20], we provided a unified approach for seg-
mentation of circular and elliptical shaped objects. In [21],
we adapted the approach to segment rectangular shaped ob-
jects and showed applications to western blot image analysis.
In this paper, we extend the approach to deal with the more
complex shape of corpus callosum.

2.1.1. Template parametrization

The inner and outer contours derived from the shape template,
ro(t) = (wo(t),yo(t))" and ri(t) = (21(t),y1(t))", where
t is an independent variable, are reparametrized as a linear
combination of cubic B-splines. The contours are closed and
here it follows that z;(¢) and y;(t) are periodic [10,22]. Ac-
cordingly, we have:
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where c; , = ) denote the spline coefficients, 3;; is

Cyik
the M -periodic version of the cubic B-spline basis 3.

2.1.2. From template to snake

Snakes are derived from the parametrized template using the
following transformation:

. . t)
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where ¢ = 0, 1, and (Xo(t), Yo(t)) and (X1(¢),Y1(t)) rep-
resent the coordinates of the inner and outer contours of the
snake, respectively. A and B represent the scale factors in di-
rections perpendicular and axial to the CC, respectively, 6 rep-
resents the angle of rotation (clockwise), and (z.,y.) are the
translation parameters. The spline coefficients of the trans-
formed snake are obtained by applying the transformation M
to the spline coefficients of the template [23]. Having defined
the contour parametrization and its transformation over RAT
space, we move on to the training phase of the algorithm.

2.1.3. Training

We annotated! a training set of images manually by placing
knots along the CC boundary. The annotated contours are
aligned by minimizing the L, norm between them. Consider
two curves 2 and {25, which are aligned by minimizing the
distance D with respect to { A, B, 0, x,y.} as:

D =Q; —M(A, B,0,zc,y:) Q| L, 3)
Fortunately, due to the Riesz basis property of B-splines [23],
minimization of the L, norm in (3) is equivalent to minimiza-
tion of a discrete sum with the following inequality:

D S ’YHCQl _M(A7B797xc7yC)CQ2H52; (4)
where ~y is the upper Riesz bound and Cq, , Cq, represent the
spline coefficients of 21 and 29, respectively. The rest of the
procedure for aligning the curves in the training set is similar
to Procrustes analysis [24]. Once the alignment is completed,
PCA is applied on the spline coefficients of the aligned curves

to obtain the mean and eigenvectors of the covariance matrix.
This constitutes our statistical model for the CC.

ITwenty six knots were placed on contour for annotation purposes.
Closely spaced knots were placed along the posterior and middle Splenium
sections to capture the high curvature. In the remaining sections, approxi-
mately equidistant knots were placed.
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2.1.4. Affine-space optimization

Motivated by the definition of contrast energy introduced
in [18, 19], we propose a modified energy:

1
&=—1a // fdxdy — (a1 — a / fdxdy »,
a5 % .~ (a1 —ao) 2,

1
=15 {ao /%1 fdaxdy — ay /é]?o f dxdy}, (&)

where ag and a; are the areas of inner and outer templates,
respectively. $y and ¥ are the regions enclosed by the inner
and outer contours' of the snake, respectively; f is the image
on which the contour lies. Minimizing & over the RAT space
enables the snake to lock on to objects that are brighter than
their surroundings. The primary role of the outer contour is
that it guides computation of contrast in a local fashion.

We proceed to optimizing the energy with respect to RAT
parameters {A, B, 6, x., y.}. Given an initialization for the
RAT parameters, we employ gradient descent optimization
technique to obtain the optimal values. Partial derivatives are
required to the solve the problem; hence, we follow a proce-
dure similar to that of [20,21] where the surface integrals are
transformed to contour integrals using Green’s theorem. Ow-
ing to space constraints we only provide the final expressions
in (6) and (7).

2.2. Shape-space optimization

The output of the affine space optimization is used as the ini-
tialization in this stage. The snake is allowed to deform in an
unconstrained manner, which is necessary because the snake
in the first stage may not converge to provide an optimal fit
to the boundaries. This behavior can be attributed to initial-
ization or shape mismatch between the template used and ac-
tual CC contour. In our algorithm, we chose unified energies
(based on region, gradient, and curvature) [10] for snake op-
timization. In addition, we periodically constrain the defor-
mation to lie within the shape space model of CC by using
a projection technique explained in the next paragraph. The
methodology is similar to that of [13] except that we use re-
stricted affine space and do not restrict the snake after every
iteration.

The snake is projected on to the space spanned by the sig-
nificant eigenvectors obtained from PCA. A procedure simi-
lar to active shape model [24] in affine space is used wherein
the components exceeding the ellipsoidal manifold are trun-
cated to the nearest point on the surface. The principal axes
(eigenvectors) of the ellipsoidal manifold are of length 6v/),
where ) is the eigenvalue corresponding to the eigenvectors
spanning the space.

I'The outer contour is obtained by segmenting the region formed by dilat-
ing the flood-fill output of inner contour. We chose a circular kernel of radius
10 pixels for dilation.

Affine-space Shape-space
A optimization optimization
New template

Fig. 1. Flowchart of the proposed approach.

No

3. RESULTS AND DISCUSSIONS

Test images were taken from OASIS database [25], which
contains 315 images out of which 72 images were used for
training and 243 images for validation. For all images, the
initialization? provided was similar to that shown in Fig. 3(a).
The average time for convergence was found to be 219.687
ms with a standard deviation of 169.69 ms. In about 10% of
the cases, mismatch in shape between the actual CC contour
and the mean template resulted in multiple passes of stages 1
and 2. However, in a majority of the cases, it converged to
the optimal fit in one or two passes. The experiment was per-
formed using ImageJ software on an Intel Core? Quad CPU
running at 2.8 GHz.

Another experiment was conducted to show the effect of
initialization on convergence (cf. Fig. 3). We note that in
Fig. 3(a)-(e), the initialization resulted in segmentation out-
put given in Fig. 3(f). We used Jaccard’s distance (JD), sensi-
tivity, and specificity to measure the performance of the algo-
rithm on 243 images using the atlas provided in the database.
The mean values of JD, sensitivity, and specificity obtained
are 0.914, 0.921, and 0.996, respectively.

The fast convergence of the algorithm can be attributed
to the template-based optimization stage. Only five param-
eters are optimized for irrespective of the number of knots
parameterizing the contour. This resulted in reduced compu-
tational requirements. Moreover, the two stages work in a
synergistic fashion, the advantage being increased robustness
to initialization and better segmentation performance. Un-
constrained snakes might be misled by neighboring structures
and are prone to looping. Enforcing shape constraints such
as those employed in [13], requires costly matrix inversion
operations making it computationally expensive. In contrast,
we operate in the affine space and shape space alternatively,
which leads to faster convergence.

4. CONCLUSION

We proposed a two-stage corpus callosum segmentation tech-
nique where in we incorporate explicit shape constraints us-
ing a restricted affine transformation with five degrees of free-
dom. The five parameters are optimized for using local con-

The template used for manual initialization is the mean template ob-
tained from the training set.
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Fig. 2. Segmentation results using the proposed algorithm for some representative images taken from the database. We have
chosen images that have a large curvature or having a diffused edge between CC contour and fornix or both.

(a) (b) (©)

(d) (e) ®

Fig. 3. Effect of initialization: Images (a)-(e) show various initializations, all of which converge to the result shown in (f).

trast as the energy function. This step gives rise to a fast,
but coarse segmentation, which is further refined by shape-
space optimization, wherein a deformable parametric active
contour is evolved with restrictions to belong to a shape space
derived out of training set of images. The segmentation per-
formance turned out to be quite reliable over a large number
of images taken from the OASIS database indicating that such
a two-pronged strategy is robust to various shapes forms and
deviations from the average shape structure. The segmenta-
tion performance is also quite robust to initialization and does

not get deviated by the fornix, which usually poses problems
in segmentation of corpus callosum. The proposed method-
ology is image-specific, that is, the training images guide the
shape-space optimization. The advantage of this approach is
that the shape-space optimization part can be tuned to a de-
sired class of images, whereas the affine-space optimization
remains relatively unchanged.
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