Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Non-Euclidean Pyramids
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Non-Euclidean Pyramids

A. Muñoz Barrutia, T. Blu, M. Unser

Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing VIII, San Diego CA, USA, July 31-August 4, 2000, vol. 4119, pp. 710-720.


We propose to design the reduction operator of an image pyramid so as to minimize the approximation error in the lp sense (not restricted to the usual p = 2), where p can take non-integer values. The underlying image model is specified using arbitrary shift-invariant basis functions such as splines. The solution is determined by an iterative optimization algorithm, based on digital filtering. Its convergence is accelerated by the use of first and second derivatives. For p = 1, our modified pyramid is robust to outliers; edges are preserved better than in the standard case where p = 2. For 1 < p < 2, the pyramid decomposition combines the qualities of l1 and l2 approximations. The method is applied to edge detection and its improved performance over the standard formulation is determined.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/munoz0002.html,
AUTHOR="Mu{\~{n}}oz Barrutia, A. and Blu, T. and Unser, M.",
TITLE="Non-{E}uclidean Pyramids",
BOOKTITLE="Proceedings of the {SPIE} Conference on Mathematical
	Imaging: {W}avelet Applications in Signal and Image Processing
	{VIII}",
YEAR="2000",
editor="",
volume="4119",
series="",
pages="710--720",
address="San Diego CA, USA",
month="July 31-August 4,",
organization="",
publisher="",
note="")
© 2000 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved