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Towards Molecular Computational Anatomy?

Alain Trouvé

(joint work with Michael Miller, Daniel Tward, Laurent Younes)

Current descriptions of brain diseases usually need to put together several orders
of magnitude ranging from the millimeter scale for tissues in standard imaging
devices to the micron or even nano scale for neural cells and molecules.

Organizing these representations within a given patient or between a population
for statistical modelling and understanding could be quite helpful but is still very
challenging from a mathematical and computational perspective. In this talk, I
will present our recent attempt to make a step in that direction in the context
of computational anatomy based on two key assets: 1- Layered coarse-to-fine dif-
feomorphic transport based on idea coming from optimal control and riemannian
geometry 2- Varifold based representations of information and reduction.
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Analysis of 1-Lipschitz Neural Networks

Sebastian Neumayer

(joint work with Pakshal Bohra, Stanislas Ducotterd, Alexis Goujon,
Dimitris Perdios, and Michael Unser)

The topics covered in this talk are related to the recent preprint [1]. Lipschitz
constrained neural networks have several advantages compared to unconstrained
ones and can be applied to various different problems. Consequently, they have
recently attracted considerable attention in the deep learning community. Since
designing and training expressive Lipschitz-constrained networks is very challeng-
ing, there is a need for improved methods and a better theoretical understanding.
As the general case is very demanding, we restrict our attention to feed-forward
neural networks with 1-Lipschitz component-wise activation functions and weight
matrices with p-norm less or equal than one. This indeed leads to 1-Lipschitz
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neural networks, for which naturally the question of expressiveness arises. Unfor-
tunately, it turns out that networks with ReLU activation functions have provable
disadvantages in this setting. Firstly, they cannot represent even simple piece-wise
linear functions such as the hat function. Secondly, there exists a whole class of
relatively simple functions that cannot be approximated in terms of the uniform
norm on bounded boxes. To show this fact, we can make use of the second-order
total variation and the fact that ReLU networks can only produce functions with
bounded second-order total variation.

Due to these observations, we propose to use learnable spline activation func-
tions with at least 3 linear regions instead. Clearly, this more complicated archi-
tecture should be motivated by theoretical findings. To this end, we prove that our
architecture is optimal among all component-wise 1-Lipschitz activation functions
in the sense that no other weight constrained architecture can approximate a larger
class of functions. However, it remains an open question whether such NNs are uni-
versal approximators of 1-Lipschitz functions and our result can be seen as a first
step towards its solution. Further, we prove that our proposed networks are in prin-
cipal able to reproduce functions with arbitrary high second-order variation. Note
that our architecture is also at least as expressive as the recently introduced non
component-wise Groupsort activation function [2] for 2-norm-constrained weights.
A more thorough comparison of linear splines to non component-wise activation
functions is subtle, and it is so far unclear which choice leads to more expressive
NNs in the remaining settings. Concerning the question of universality, the talk
focused mainly on the approximation of scalar-valued functions f : Rd → R. This
also reflects the current state of research, where most results are only formulated
for scalar-valued NNs. Extending these results to vector-valued functions appears
highly non-trivial and should be addressed in future research. Finally, I would
like to mention that little is known about the optimal structure for deep spline
and Groupsort NNs, i.e., if it is more preferable to go deep or wide in architecture
design.

On the numerical side, we are currently preparing a preprint with extensive ex-
periments and details for an efficient implementation. For the implementation, we
basically rely on a B-spline representation, which was already used before in [3].
However, we also need to take care of the additional Lipschitz constrained. This
can be done in several ways, but naive approaches can lead to inferior training
performance. To circumvent this issue, we instead propose to directly optimize
over the set of 1-Lipschitz linear splines based on a method called Differentiable
Slope Clipping. Our preliminary numerical results for one-dimensional function
fitting, Wasserstein distance estimation and image reconstruction within the Plug-
and-Play framework confirm that our architecture is at least competitive (often
even better) with other recently proposed activation functions such as GroupSort,
Householder activations and parametric ReLU, which were also all designed with
the goal of increasing expressivity in mind. One additional advantage of our imple-
mentation over the other methods is that it can be applied to any already trained
network by just initializing the linear splines accordingly. This possibly avoids
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an expensive retraining. A Github repository with the implementation will be
available soon.
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Discrete geodesic calculus in the manifold of Sobolev curves

Benedikt Wirth

(joint work with Martin Rumpf)

The manifold of (closed) Sobolev curves is a well-known example of an infinite-
dimensional shape space. It consists of immersions of the circle S1 into Rd with
Sobolev regularity,

Immm = {c ∈ Wm,2(S1;Rd) | c′(θ) ̸= 0 for all θ ∈ S
1},

where m ≥ 2 and c′ denotes the derivative with respect to the parametrization
variable θ (which for m ≥ 2 is everywhere defined). This manifold can be equipped
with a Riemannian metric of Sobolev type,

gc(ξ, ζ) =

∫

S1

m
∑

i=1

∂isξ · ∂isζ ds

for any curve c ∈ Immm and tangent vectors ξ, ζ : S1 → Rd. Above, s =
∫ θ

0 |c′(θ̃)| dθ̃ denotes arclength along the curve c so that

ds = |c′(θ)|dθ, ∂s =
∂θ

|c′(θ)| .

The induced Riemannian distance between two curves c0, c1 ∈ Immm can then be
computed by minimizing the path energy E among all paths (ct)t∈[0,1] in Immm

with fixed endpoints c0, c1,

d2(c0, c1) = inf E [(ct)t∈[0,1]] with E [(ct)t∈[0,1]] =

∫ 1

0
gct(ċt, ċt) dt

(where ċt denotes the derivative of the path with respect to the time variable
t). Furthermore, geodesics in the manifold of Sobolev curves can be defined as
minimizers of this path energy for fixed endpoints.

Bruveris, Michor and Mumford have shown [1, 2] that this manifold of Sobolev
curves is metrically and geodesically complete and that shortest geodesics between
any two curves exist (as long as they lie in the same connected component, thus,
if they have the same winding number when d = 2). To show this one exploits
that the path energy E actually just behaves like the squared Sobolev norm of


