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Inverse Rendering of Lambertian Surfaces
Using Subspace Methods

Ha Q. Nguyen and Minh N. Do, Fellow, IEEE

Abstract— We propose a vector space approach for inverse
rendering of a Lambertian convex object with distant light
sources. In this problem, the texture of the object and arbitrary
lightings are both to be recovered from multiple images of
the object and its 3D model. Our work is motivated by the
observation that all possible images of a Lambertian object lie
around a low-dimensional linear subspace spanned by the first
few spherical harmonics. The inverse rendering can therefore be
formulated as a matrix factorization, in which the basis of the
subspace is encoded in a spherical harmonic matrix S associated
with the object’s geometry. A necessary and sufficient condition
on S for unique factorization is derived with an introduction
to a new notion of matrix rank called nonseparable full
rank. A singular value decomposition-based algorithm for exact
factorization in the noiseless case is introduced. In the presence
of noise, two algorithms, namely, alternating and optimization
based are proposed to deal with two different types of noise.
A random sample consensus-based algorithm is introduced to
reduce the size of the optimization problem, which is equal to the
number of pixels in each image. Implementations of the proposed
algorithms are done on a real data set.

Index Terms— Computational relighting, Lambertian surfaces,
inverse rendering, reflectance function, spherical convolution,
spherical harmonics, matrix factorization, singular value
decomposition, convex optimization.

I. INTRODUCTION

COMPUTATIONAL relighting is the problem of rendering
images under virtual and novel lighting conditions. While

it has been widely used on synthetic scenes constructed from
computer graphics models or on real scenes captured under
controlled lighting conditions, efficient relighting on general
real scenes remain a research challenge due to its complexity
involving both the geometric and photometric aspects in
the image formation process. Existing relighting methods
(see [1], [2] and the references therein) often consist in estima-
tion, or inverse rendering of the scene geometry and texture,
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the BRDF (Bi-directional Reflectance Distribution Function)
that defines the reflectance characteristics of the scene, and the
lighting parameters. Given only the image data, the estimation
of all these factors is ill-posed, and can only be achieved by
strict assumptions on the scene geometry and/or light sources,
or by controlled experiments (see [3]). The introduction of
depth cameras and recent development of depth sensor fusion
algorithms such as KinectFusion [4] open up new opportuni-
ties for efficient and reliable acquisition of 3D scene geometry
in real-time. In this work, we explore the incorporation of
geometry information in an inverse rendering problem under
general, arbitrary (or uncontrolled) distant illumination.

Our work focuses on inverse rendering of convex
Lambertian surfaces with known geometry given several
images under various distant lighting conditions. In this
model, the problem can be formulated, with the aid of a
signal processing framework [5], [6], as a matrix factorization,
in which an image matrix has to be decomposed into a
product of an albedo diagonal matrix with a known spherical
harmonic (SH) matrix in the middle and a lighting matrix.
To the best of our knowledge, our work is the first one to
study the problem of recovering both nonuniform albedos and
uncontrolled lightings at the same time based on images and
scene geometry. This is, to some extent, similar to an array
signal processing problem [7], where both the DOAs (direction
of arrivals) and sources are to be estimated from multiple
snapshots of the array.

The main contribution of this paper is to solve the special
matrix factorization mentioned above in both noiseless and
noisy cases using the power of subspace methods. In the
noiseless case, when both the lighting model and measurement
are accurate, we gives a necessary and sufficient condition
for unique factorization with an introduction to a new notion
of matrix full rank, called nonseparable full rank (NSFR).
We also solve for an exact solution using singular value
decomposition (SVD) when the factorization is unique. In the
noisy case we deal with the approximation error and mea-
surement noise separately. When the approximation error is
present, we propose an SVD-based algorithm to find the least
squares solution of the factorization. This algorithm can be
slightly modified to become a convex optimization that incor-
porates the positivity constraint on albedos. Another algorithm
based on RANdom SAmple Consensus (RANSAC) [8] is also
proposed to reduce the large size of the optimization problem
which is equal to the number of pixels in each image.
On the other hand, when the measurement noise is present,
we propose an alternating least squares algorithm to find a
local optimizer for the factorization.
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The remainder of the paper is structured as follows. Sec. II
reviews some of the related work. Sec. III discusses basic
background of the reflection equation and spherical harmonic
expansions. Sec. IV formulates the inverse rendering as a
special matrix factorization problem. Sec. V studies the
uniqueness and exact solution of the factorization. Sec. VI
provides various algorithms for the matrix factorization in
the presence of noise based on least squares and convex
optimization. Sec. VII discusses a computational issue on the
large size of the optimization problem and a heuristic way to
overcome it. Sec. VIII presents some experimental results on
a real dataset using the proposed algorithms. Finally, Sec. IX
makes some concluding remarks.

II. RELATED WORK

The difficulties of inverse rendering under uncontrolled
lighting are due to the lack of a discretized framework that
can efficiently describe the reflectance function which has
been often interpreted as a spherical integral. Ramamoorthi
and Hanrahan in their series of work [5], [9], [10] introduced
a signal processing framework for inverse rendering, in
which a reflectance function is treated simply as a spherical
convolution of a lighting function with the reflection kernel
(BRDF multiplied by the half-cosine) and scaled by the
albedos. This allows us to relate a reflectance function of an
object to the lighting and the reflection kernel in terms of
their SH expansions (sphere counterpart of Fourier series).
Transforming from space-domain to frequency-domain
yields two great advantages: (1) integrals are mapped to
products of coefficients; and (2) reflectance function can be
well-approximated by a few low-frequency terms (because
reflection kernels often vary slowly). Based on this framework,
the authors developed various algorithms for inverse
rendering, most of which are under the form of an alternating
optimization in which no global solution is guaranteed.
Furthermore, they only considered homogeneous objects with
no texture, and thus ignoring the local scalings by the albedos
of the reflection. Our method deals with nonuniform albedos
and can give exact solutions in the noiseless case.

Basri and Jacobs in an independent work [6] discovered a
similar result for the special case of Lambertian (or diffuse)
surfaces whose reflection kernels are simply the half-cosine
function which contains mostly low-frequency components.
As a result, it was shown in [6] that any reflectance function
of a Lambertian convex homogeneous object with distant light
sources can be well-approximated by its first 9 terms of the
SH series. In other words, all the images of such an object
live close to a 9-dimensional linear subspace spanned by
the first 9 SHs associated with the geometry of the object.
Basri et al., in the subsequent work [11] on photometric
stereo (PS), matricized this key observation to formulate the
inverse rendering as a matrix factorization which is similar
to ours. In the PS problem, however, the albedos are often
assumed to be uniform, and the scene geometry is unknown
and to be reconstructed. In contrast, our work assumes known
geometry and the nonuniform albedos are to be recovered.
The authors of [11] proposed a matrix factorization based
on the SVD followed by a low-rank approximation to estimate

the shape of the object. This method is very similar to
Tomasi–Kanade factorization [12], that has been widely
used in structure from motion, a classical problem in
computer vision. However, this type of factorization is only
within a linear ambiguity that cannot be fully resolved without
any further prior knowledge. In particular, because the set
of all possible images of an object, called its illumination
cone, is invariant to any 3 × 3 linear transformations of
the object’s geometry [13], the 9-D subspace of SHs, and
hence the factorization is approximately the same for different
objects related by a linear transformation. If using only the
first 4 SHs in the approximation, the linear ambiguity of the
factorization can be reduced to a Lorentz transformation [14]
with 7 degrees of freedom, by taking into account the unit
norm of surface normals. Del Bue et al. [15] presented a
bilinear factorization method to solve the PS problem, where
one of the factors is constrained to lie on a specific manifold.
The formulation decouples the core bilinear aspect from the
manifold specificity and can be solved using Augmented
Lagrange Multipliers. However, the manifold projector based
on unit norm of surface normals only permits the use of first
order SHs.

More recently, Nießner, Zollhöfer, Wu et al. [16]–[18]
introduced several methods for real-time inverse rendering
from color plus depth data, in which the geometry is obtained
from depth maps and some geometry refinement procedure.
Unlike our work, these papers focus more on the practical
side of the inverse rendering including geometry acquisition.
However, similar to PS literature, these methods assume
uniform albedos while estimating the lightings. In contrast,
our paper puts more emphasis on the theoretical side of the
matrix factorization problem where the lightings and albedos
are estimated simultaneously using subspace methods.

For glossy objects when the Lambertian assumption is no
longer hold, BRDF recovery has also been widely investigated
in the computer graphics community [19]–[22]. In a recent
work, Goldman et al. [23] estimated both geometry and BRDF
from a small number of photographs. However, all of these
methods for BRDF acquisition heavily rely on a controlled
lighting setup in which the light can be easily calibrated.
In this paper, we assume Lambertian objects with constant
BRDF. This strict assumption allows us to rigorously tackle the
inverse rendering under arbitrary general lighting conditions.

III. PRELIMINARIES

This section summarizes the signal-processing frame-
work [1], [6] that relates a reflectance function to the lighting
and reflection kernel as a spherical convolution in space-
domain. The relation can be transformed into frequency-
domain via spherical harmonic expansions.

A. Reflection as Convolution

Throughout this paper, we restrict our interest to the
illumination of Lambertian convex objects with distant light
sources. The convexity assumption makes sure that there are
no shadowing and inter-reflection which are very hard to
analyze. Likewise, the Lambertian assumption implies that
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Fig. 1. Global and local coordinate systems. Green vectors define the
global Cartesian coordinate system x yz. Blue vectors define a local coordinate
system x′ y′ z′ associated with the normal n such that z′ = n. The light vector
in red is labeled ω w.r.t. global coordinates and ω′ w.r.t. local coordinates;
θ ′ is the polar angle of ω′. The lighting function L(ω) is given in global,
whereas the reflection kernel K (ω′) is given in local coordinates. The two
coordinates are related by the rotation that transfers the normal n (or z′) to
the polar vector z: ω′ = Rn→zω.

the reflection does not depend on the viewing angle, and
so significantly simplifies our lighting model. We want to
remark that, although assumed to be distant, the light source
can be arbitrarily complex but not necessarily a point source.

In the following analysis, we refer to Fig. 1 that illustrates
the global and local coordinate systems associated with a
location on the surface of the object. Let p be a point on
the surface with normal vector n, and L(ω) be the lighting
function that defines the incident radiance at angle ω w.r.t.
some global coordinate system x yz. The reflected radiance
(or reflectance function) Y ( p, n) at location p and normal n,
is then given by integrating the reflections over all possible
light directions. In particular,

Y ( p, n) = ρ( p)

∫

#
L(ω) cos(θ ′)dω′, (1)

where ρ( p) is the albedo at location p; ω′ is the light direction
w.r.t. the local coordinate system x′ y′z′ obtained by rotating
x yz so that z′ = n; θ ′ is the corresponding polar angle of ω′;
and the integrating region # is the upper-hemisphere of the
unit sphere. The integral in (1) can be extended to the whole
unit sphere S as

Y ( p, n) = ρ( p)

∫

S
L(ω)K (ω′)dω′, (2)

where K (ω′) $= max(cos θ ′, 0) is a half-cosine function of
the local polar angle θ ′. We will later refer to K (ω′) as the
Lambertian kernel. Note that, although written as K (ω′) for
general purpose, this kernel is actually a 1-D function that
depends only on the polar angle of the incident direction in
local coordinates.

By definition, the global and local coordinates are related
by a 3D rotation: ω′ = Rn→zω, where Rn→z is the rotation
matrix that brings n = z′ back to z. Substituting this relation
into (2), we arrive at

Y ( p, n) = ρ( p)

∫

S
L(ω)K (Rn→zω)dω, (3)

We can easily recognize the integral in (3) as a spherical
convolution, in which the translation operator in a classical

circular convolution is replaced with a rotation operator. We
adopt the notation !s for spherical convolution and write

(L !s K )(n)
$=

∫

S
L(ω)K (Rn→zω) dω. (4)

Similar to circular convolutions, the above spherical convo-
lution defines a linear rotation-invariant (LRI) system with
impulse response K (ω).

To summarize the above analysis, the reflectance function
is now a spherical convolution of the lighting and Lambertian
kernel scaled by albedos, i.e.,

Y ( p, n) = ρ( p)(L !s K )(n). (5)

B. Spherical Harmonics as Basis

Now we want to look at the reflection equation (5) in
frequency-domain because the energy of the Lambertian kernel
K (ω′) is compacted in low frequencies. As a spherical coun-
terpart of Fourier basis on the circle, the spherical harmonics
{Sm,n}m≥0,|n|≤m form an orthonormal basis for functions on
the unit sphere, whose formulas are given by

Sm,n(ω) = Nm,n · Pm,n(cos θ) e jnϕ, (6)

where j = √−1; θ and ϕ are respectively the polar and
azimuthal angles of ω: θ = arccos(z),ϕ = arctan(y/x);
Pm,n(·) is the associated Legendre function; and Nm,n is the
normalized term.1

Similarly to Fourier series of functions on a circle, every
function F(ω) on the unit sphere has a spherical harmonic
(SH) expansion

F(ω) =
∞∑

m=0

m∑
n=−m

fm,n · Sm,n(ω),

where the SH coefficients fm,n are given by

fm,n = ∫
S F(ω)S∗

m,n(ω) dω.

The feature that makes spherical harmonics similar to
Fourier basis on a circle is that they are eigensignals of
LRI systems.2 This key property maps a spherical convolution
in space-domain to a multiplication in frequency-domain.
Particularly, let the SH coefficients of L, K and L !s K
be {ℓm,n}, {km,n}, and {xm,n}, respectively, then it was shown
in [5] and [6] that

xm,n =
√

4π
2m + 1

km,0 ℓm,n, m ≥ 0, |n| ≤ m (7)

Moreover, it was also shown in [6] that the convolution
L !s K can be well-approximated using first few terms in its
SH expansion, namely

(L !s K )(n) ≈
M ′−1∑

m′=0

m′∑

n′=−m′
xm′,n′ · Sm′,n′(n),

1See [6] for specific formulas of Pm,n(·) and Nm,n .
2See a special case of the Funk-Hecke theorem [6, Th. 1]. Note that since

K (θ ′) is a 1-D function of the polar angle, its SH coefficients km,n are nonzero
only for n = 0.
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for small M ′ (for instance, using M ′ = 3 preserves roughly
97.96% the energy of L !s K .) As a result, the reflectance
function can be approximated by

Y ( p, n) ≈ ρ( p)
∑M

m=1 xm · Sm(n), (8)

where M = M ′2, and the double index (m′, n′) was converted
to the single index m = m′2 + m′ + n′ + 1. In words, this
approximation says that, all the reflectance functions of a
Lambertian textureless object live around a low-dimensional
linear subspace spanned by the first few SHs evaluated at the
normal vectors of the object.

It is important to note that the SHs presented above are
complex-valued (for analytical simplicity). In experiments,
however, we can use the real-valued SHs which are real and
imaginary parts of the above functions. From now on, we
assume that the SHs, {Sm(ω)}m≥1, are real-valued, where the
specific forms for the first 9 of them at ω = (x, y, z), for
x2 + y2 + z2 = 1, are given below [6, eq. (7)]

S1 = 1√
4π

, S2 =
√

3
4π

x, S3 =
√

3
4π

y, S4 =
√

3
4π

z,

S5 =
√

15
4π

xy, S6 =
√

15
4π

yz, S7 =
√

5
16π

(3z2 − 1),

S8 =
√

15
4π

zx, S9 =
√

15
16π

(x2 − y2). (9)

IV. PROBLEM STATEMENT

A. From Reflection to Images

Suppose we are given J images taken at the same viewpoint
of the same object under different lighting conditions. Let
N be the number of pixels in each image, and pi be the
location on the surface corresponding to pixel i on each image,
for i = 1, . . . , N . From (8), the intensity at pixel i of image j
can be approximated by

Y j ( pi , ni ) ≈ ρ( pi )
M∑

m=1

xm, j · Sm(ni ), (10)

for 1 ≤ i ≤ N, 1 ≤ j ≤ J . We can put all equations in (10)
into a single matrix form by defining matrices Y ∈ RN×J ;
" ∈ DN (the set of all size-N diagonal matrices); X ∈ RM×J ;
and S ∈ RN×M as

Y i j = Y j ( pi ), "ii = ρ( pi ), Xmj = xm, j ,

and

Sim = Sm(ni ), (11)

for 1 ≤ i ≤ N, 1 ≤ j ≤ J, 1 ≤ m ≤ M , and M i j denotes
the entry of matrix M at row i and column j . With these
notations, (10) becomes

Y ≈ "SX, (12)

where Y ,", S and X will be respectively referred to as image,
albedo, spherical harmonic and lighting matrices.

B. The Matrix Factorization

For analytical purpose, we first assume the noiseless case
when the approximation in (12) is replaced with exact equation

Y = "SX, (13)

In light of (13), the inverse rendering problem becomes a
matrix factorization in which the image matrix Y ∈ RN×J

and SH matrix S ∈ RN×M are known (can be computed from
given images and 3D model of the object); the albedo matrix
" ∈ DN and lighting matrix X ∈ RM×J are to be recovered.
Once the albedo and lighting matrices are reconstructed, say
"̂ and X̂ , the forward rendering becomes an obvious matrix
multiplication

ynew = "̂Sxnew,

where ynew corresponds to a novel image under a virtual
lighting generated by a vector xnew. The rest of the paper
is dedicated to the problem of solving (", X) from (13) given
(Y , S), which will be referred to as the matrix factorization.

We first note this matrix factorization must always have a
solution ("0, X0) ∈ DN × RM×J , where DN denotes the set
of all N × N diagonal matrices, as the image matrix Y is
collected according to the above lighting model. The recovery
of (", X) is possible only if ("0, X0) is the unique solution
of the matrix factorization, within a scaling. Therefore, we
need to assume further that: (1) "0 ∈ DN

∗ , or all diagonal
entries of "0 are nonzero, and (2) X0 ∈ RM×J

full , or X0
has full row rank. The need for these assumptions will be
justified later in the proof of uniqueness. Here, we just want
to make a few remarks on them. The first assumption that
all albedos are nonzero, does not restrict ourselves because
the zero-intensity pixels corresponding to zero albedos can be
masked out of the equations. Likewise, the second assumption
that X0 has full row rank is reasonable and often made
in classical algorithms for array signal processing such as
MUSIC (MUltiple SIgnal Classification) [24] and ESPRIT
(Estimation of Signal Parameters via Rotational Invariance
Techniques) [25]. It essentially means that the images are to
be taken under diversified lighting conditions. This assumption
also implicitly requires that the number of images J must be
greater than the dimension M of the approximation subspace.

V. NOISELESS CASE: UNIQUENESS AND EXACT SOLUTION

We start with the noiseless case when (13) holds, ignoring
both the approximation error and measurement noise. The
first question one should ask when dealing with an inverse
problem is when the recovery is unique. This section provides
a necessary and sufficient condition on the SH matrix S such
that the matrix factorization (13) is unique (up to a scaling
factor), and an SVD-based method for recovery.

A. Uniqueness

Before stating the condition for uniqueness, we introduce
some new notions of matrix full rank (FR) which will be
useful later. The results of this subsection might be also of
independent interests. Consider a tall matrix S ∈ RN×M
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with N > M . Let N denote the set {1, 2, . . . , N}. For any
subset J of N , let J c be the complement of J in N , and let
SJ be the submatrix constituted from the rows of S indexed
by J . We say J is a nontrivial subset of N if J ̸= N and
J ̸= ∅.

Definition 1 ([26], [27]): The Kruskal rank of S, denoted
by krank(S) is the maximal number k such that any k rows
of S are linearly independent.3 S is said to have Kruskal full
rank (KFR) if krank(S) = M.

Definition 2: S is said to have strong full rank (SFR) if it
has no zero rows and rank(SN \{i}) = M for all i ∈ N .

Definition 3: S is said to have nonseparable full rank
(NSFR) if it has no zero rows, and rank(S) = M, and
there does not exist a nontrivial subset J of N such that
rank(SJ ) + rank(SJ c ) = M.

In words, a matrix has NSFR if it has full column rank and
its rows cannot be separated into two groups whose ranks add
to the rank of the matrix. That justifies the term “nonseparable
full rank.” The following result gives another description of
NSFR.

Proposition 1: S has NSFR if and only if rank(SJ ) +
rank(S.J ) ≥ M + 1, for every nontrivial subset J of N .

Proof: Suppose that S has NSFR, then for every nontrivial
subset J of N we have

rank(SJ ) + rank(SJ c ) ̸= M.

On the other hand

rank(SJ ) + rank(SJ c) ≥ rank(S) = M.

Hence

rank(SJ ) + rank(SJ c ) ≥ M + 1, ∀ ∅ ̸= J ! N (14)

completing the “only if” part. For the “if” part, suppose (14)
holds, then it is obvious that rank(SJ ) + rank(SJ c ) ̸= M ,
for every nontrivial subset J of N . We only need to show
that S has no zero rows and rank(S) = M . Indeed, for every
i ∈ N we have

rank(S{i}) + rank(SN \{i}) ≥ M + 1. (15)

Since rank(S{i}) ≤ 1 and rank(SN \{i}) ≤ rank(S) ≤ M ,
(15) implies that rank(S{i}) = 1, and rank(SN \{i}) = M .
From rank(S{i}) = 1,∀i ∈ N , we can deduce that S has
no zero rows. Meanwhile, rank(SN \{i}) = M implies that
rank(S) = M , completing the “if” part. "

The definition of NSFR is not very intuitive. The following
fact gives us a sense of how strong NSFR is, in comparison
to KFR and SFR, whose definitions are more intuitive.

Proposition 2: The following implications hold: KFR ⇒
NSFR ⇒ SFR ⇒ FR. The reverse implications are generally
not true. However, for N = M + 1, KFR, NSFR, and SFR are
equivalent.

Proof: See Appendix A. "
Fig. 2 illustrates the four concepts of full rank in the rela-

tions described in Proposition 2. We would like to emphasize

3Kruskal rank is typically defined for fat matrices, requiring linear indepen-
dence of any k columns. Here, we define it for tall matrices to conform to
the context of the matrix factorization problem stated in Section IV.

Fig. 2. Illustration of different notions of full rank for M = 2, N = 4 and
S = [s1, s2, s3, s4]T . (a) Full rank. (b) Strong full rank. (c) Nonseparable
full rank. (d) Kruskal full rank.

that the number of rows of S in our matrix factorization
problem is typically large, resulting in costly computations.
The following result will be useful later when we want to
reduce the size of the problem.

Proposition 3: S has NSFR if there exists a subset J of N
such that SJ has NSFR.

Proof: See Appendix B "
With the NSFR carefully defined, we are ready to state the

necessary and sufficient condition for the uniqueness of the
matrix factorization up to a scaling factor. This is certainly
the best we can hope for because if ("0, X0) is a solution
then so is

(
α"0,

1
α X0

)
, for any scalar α ̸= 0. In the remainder

of the paper, we frequently use the ⊙ symbol to denote
point-wise operators between matrices. Namely,

A ⊙ B $= {ai j · bi j }i, j ,

A ⊙ /B $= {ai j /bi j }i, j ,

A⊙α $= {aαi j }i, j .

Theorem 1: Given a pair of matrices (Y , S), the matrix
factorization (13) has no solutions (", X) ∈ DN × RM×J

other than
(
α"0,

1
α X0

)
, for some scalar α ̸= 0, if and only if

S has NSFR.
Proof: For brevity, we only show here the proof for

the sufficiency part; the proof for the necessity part is in
Appendix E.

Suppose S has NSFR and there exist ("̃, X̃) ∈ DN ×RM×J

such that

Y = "0 SX0 = "̃SX̃ . (16)

We will show that ("̃, X̃) = (α"0,
1
α X0) for some α ̸= 0.

Assume conversely that "̃ is not a scaled version of "0.
We first note that, by definition, S has full column rank,
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i.e., rank(S) = M . Let "0 = diag(ϕ), and "̃ = diag(ϕ̃),
where ϕ ∈ RN

∗ and ϕ̃ ∈ RN . Since S has no zero rows
and X0 has full row rank, each row of the product matrix
SX0 must be different from zero vector. Furthermore, since
ϕi ̸= 0,∀ i ∈ N , each row of Y must also be different
from zero vector. From this and (16), we can deduce that
ϕ̃i ̸= 0,∀ i ∈ N .

It is then valid to put ψ = ϕ ⊙ /ϕ̃, and % = diag(ψ).
From (16) we get

%SX0 = SX̃. (17)

Since X0 has full row rank, (17) is equivalent to

%S = SX̃ X†
0, (18)

where X†
0 = XT

0 (X0 XT
0 )−1 is the pseudo-inverse of X0.

Consider the following matrix

Ŝ = [S|%S] =

⎡

⎢⎢⎣

sT
1 ψ1sT

1
sT

2 ψ2sT
2

· · · · · ·
sT

N ψN sT
N

⎤

⎥⎥⎦, (19)

where sT
i ∈ RM be the i -th row vector of S for i ∈ N . Before

proceeding we need the following lemmas whose proofs can
be found in Appendices C and D.

Lemma 1: rank(ŜI) = rank(SI), for all I ⊂ N .
Especially, rank(Ŝ) = rank(S) = M.

Lemma 2: For any I ⊂ N , if B is a subset of I such that
{si }i∈B is a basis for R(ST

I ) then {[sT
i |ψi sT

i ]T }i∈B is a basis

for R(Ŝ
T
I ).

Let us now continue with the proof of Thm. 1. The
hypothesis that "̃ is not a scaled version of "0 implies that
elements of the set {ψi }N

i=1 are not all equal. Thus, there must
exist a nontrivial subset J of N such that ψ j = θ,∀ j ∈ J
and ψ j ̸= θ,∀ j ∈ J c, for some fixed θ ̸= 0.

Now that S has NSFR, from Proposition 1 we must have

rank(SJ ) + rank(SJ c ) ≥ M + 1. (20)

Combining with Lemma 1 yields

rank(ŜJ ) + rank(ŜJ c ) ≥ M + 1. (21)

Expressing this in terms of dimensions gives

M + 1 ≤ dim
(
R(Ŝ

T
J )

)
+ dim

(
R(Ŝ

T
J c )

)

= dim
(
R(Ŝ

T
J ) + R(Ŝ

T
J c)

)
+ dim

(
R(Ŝ

T
J ) ∩ R(Ŝ

T
J c)

)

= dim
(
R(Ŝ

T
)
)

+ dim
(
R(Ŝ

T
J ) ∩ R(Ŝ

T
J c)

)

= M + dim
(
R(Ŝ

T
J ) ∩ R(Ŝ

T
J c )

)
.

Therefore

dim
(
R(Ŝ

T
J ) ∩ R(Ŝ

T
J c)

)
≥ 1.

There thus exits a nonzero vector ŝ in R(Ŝ
T
J ) ∩ R(Ŝ

T
J c).

Let K ⊂ J and L ⊂ J c such that {sk}k∈K is a basis
of R(ST

J ) and {sℓ}ℓ∈L is a basis of R(ST
J c). It follows

from Lemma 2 that {[sT
k |θ sT

k ]T }k∈K is a basis of R(Ŝ
T
J )

and {[sT
ℓ |ψℓsT

ℓ ]T }ℓ∈L is a basis of R(Ŝ
T
J c). Then ŝ can be

represented in two different ways as

ŝ =
∑

k∈K
αk[sT

k |θ sT
k ]T =

∑

ℓ∈L
βℓ[sT

ℓ |ψℓsT
ℓ ]T . (22)

Hence
∑

k∈K
αk sk =

∑

ℓ∈L
βℓsℓ =

∑

ℓ∈L

βℓψℓ
θ

sℓ. (23)

By the linear independence of {sℓ}ℓ∈L we have

βℓ = βℓψℓ/θ, ∀ℓ ∈ L. (24)

Since ŝ ̸= 0, it follows from (22) that there exists a ℓ∗ ∈ L
such that βℓ∗ ̸= 0. This together with (24) yields ψℓ∗ = θ ,
contradicting to the above hypothesis that ψ j ̸= θ for all
j ∈ J c. Therefore {ψi }N

i=1 must be all equal, i.e. "̃ = α"
for some α ̸= 0. From (16), because S has full column rank,
it must be that

X̃ = S†"̃
−1

Y = 1
α

S†"−1
0 Y = 1

α
X0, (25)

where S† = (ST S)−1 ST is the pseudo-inverse of S. This
completes the proof of the sufficiency part. "

B. Exact Solution

This subsection is to solve the matrix factorization (13)
given that it has unique solution, i.e. S has NSFR by Thm. 1.
Note that since S has full column rank, once " is known,
X can be uniquely recovered by

X = S†("−1Y). (26)

Therefore, we can focus on finding " which has a diagonal
structure. We propose an SVD-based algorithm to exactly
recover ". The algorithm is based on the following theorem,
our second main result in the noiseless case.

Theorem 2: " = diag(ϕ) is a solution to (13) if and only
if z $= ϕ⊙−1 is a nontrivial solution to

(
(I − SS†) ⊙ (YY T )

)
z = 0. (27)

Proof: Let z $= ϕ⊙−1, then it is clear that ϕ solves
Y = diag(ϕ)SX if and only if z solves

diag(z)Y = SX . (28)

It is equivalent to that each column of the LHS is in the range
space of S, i.e.

(diag(z)Y) j ∈ R(S), ∀ j = 1, . . . , J. (29)

Note that a vector lies in some subspace if and only if its
orthogonal projection onto the subspace is equal to itself. Thus,
(29) can be written equivalently as

PR(S)(diag(z)Y ) j = (diag(z)Y) j , ∀ j = 1, . . . , J.

Replacing the projection matrix PR(S) by SS†, we arrive at

(I − SS†)(diag(z)Y) j = 0, ∀ j = 1, . . . , J. (30)
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Let Q $= I − SS†. For each j = 1, . . . , J , let D j
$=

diag((Y) j ), then we can rewrite (30) as

Q D j z = 0, ∀ j = 1, . . . , J. (31)

Define matrix A by

A $=

⎡

⎢⎣
Q D1

...
Q DJ

⎤

⎥⎦. (32)

With this notation, we can compact all J equations in (31)
into a single one as

Az = 0, (33)

which is in turn equivalent to

AT Az = 0. (34)

We can complete the proof at this point by using the following
lemma whose proof is given in Appendix F.

Lemma 3: For matrix A defined in (32), we have

AT A = (I − SS†) ⊙ (YY T ).
"

Thm. 2 naturally gives rise to Alg. 1, in which we solve (27)
for z by picking the eigenvector associated with the smallest
eigenvalue of the positive definite matrix (I − SS†)⊙ (YY T ).
Once " is found, X can be computed using (26).

The following corollary is very useful in checking whether
a matrix S has NSFR. It can be deduced directly from Thm. 1
and Thm. 2 by setting "0 = I N , X0 = I M , and Y = S.

Corollary 1: A matrix S ∈ RN×M has NSFR if and only if

rank
(
(I − SS†) ⊙ (SST )

)
= N − 1.

We conclude this subsection by giving a few comments on
this result. Without identifying the NSFR with the uniqueness
of the corresponding matrix factorization, we can hardly see
the connection between Definition 3 and Corollary 1. When
fixing M and growing N , checking if an N × M matrix
has NSFR using the brute-force approach (i.e., computing the
rank of every submatrix) would be exponentially complex.
However, Corollary 1 provides a much more efficient indirect
way to do so, in which only the rank of an N × N matrix
needs to be computed, resulting in a polynomial complexity.

VI. NOISY CASE: ALGORITHMS

It is important to note that the equation in (13) can never
be the case due to the approximation and measurement errors.

Taking into account these noises, (13) should be remodeled as

Y = "(SX + W1) + W2, (35)

where W1 and W 2 are respectively the approximation and
measurement noises. Here, we assume both of them are
deterministic unknown quantities. It is natural to pose the
following least squares problem

min
∥∥∥∥

[
W1
W 2

]∥∥∥∥
F

s.t. Y = "(SX + W1) + W2, (P0)

where ∥ · ∥F denotes the Frobenius norm. Solving (P0) in the
presence of both W1 and W2 is generally hard. In the sequel,
we only tackle the two special cases of this noisy problem
when either W1 or W2 is negligible.

A. No Measurement Error

If there is no measurement error, i.e. W 2 = 0, (35) can be
rewritten as

"−1Y = SX + W1.

Therefore, (P0) becomes

min
"∈DN

∗ ,∥"−1∥F =1
X∈RM×J

∥"−1Y − SX∥F , (P1)

where the constraint ∥"−1∥F = 1 is added to resolve the
scaling ambiguity. The solution to this problem turns out to
be identical to the exact solution in the noiseless case.

Theorem 3: The solution to the least squares problem (P1)
is given by

"LS = diag(zmin⊙−1), (36)

and

XLS = S† diag(zmin)Y , (37)

where zmin is the eigenvector associated with the smallest
eigenvalue of (I − SS†) ⊙ (YY T ).

Proof: Fixing " ∈ DN
∗ such that ∥"−1∥F = 1, the least

squares solution for X is given by

XLS(") = arg min
X∈RM×J

∥"−1Y − SX∥F

= S†"−1Y . (38)

Substituting into (P1) and using the matrix notations in Sec. V
we can solve for the least squares solution of " as

"LS = arg min
"∈DN∗ ,∥"−1∥F =1

∥"−1Y − SX L S(")∥F

= arg min
"∈DN∗ ,∥"−1∥F =1

∥"−1Y − SS†"−1Y∥F

= arg min
"∈DN∗ ,∥"−1∥F =1

∥ Q"−1Y∥F

= arg min
"∈DN∗ ,∥"−1∥F =1

∥vec( Q"−1Y )∥2 (39)
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Fig. 3. Illustrating the convexification of the feasible set of interest in R2.
The original nonconvex feasible set, depicted by the dashed arc, is replaced
with the chord connecting the two endpoints of the arc.

= arg min
"=diag(z⊙−1),∥z∥2=1

∥∥∥∥∥∥∥

⎡

⎢⎣
Q D1

...
Q D J

⎤

⎥⎦ z

∥∥∥∥∥∥∥
2

= arg min
"=diag(z⊙−1),∥z∥2=1

∥Az∥2

= arg min
"=diag(z⊙−1),∥z∥2=1

∥AT Az∥2

= diag
(

zmin⊙−1
)
, (40)

where the operator vec(·) in (39) stacks columns of a matrix
into a big column vector; (40) follows from Lemma 3 and the
definition of zmin. Substituting (40) into (38) yields

XLS = S† diag(zmin)Y ,

completing the proof. "
With the aid of Thm. 3, Alg. 1 finds not only the exact

solution in the noiseless case but also the least squares solution
of problem (P1). We want to recall, however, that the diagonal
entries of " are the albedos of the object, and so must be all
positive. It follows that the vector z = ϕ⊙−1 must be point-
wise positive as well. Therefore the positivity constraint on z
should also be incorporated into the recovery. In order to do
so, we first note that, finding the eigenvector corresponding
to the smallest eigenvalue of M is nothing but solving the
optimization problem

min ∥M z∥2 s.t. ∥z∥2 = 1. (41)

Now we can adjust (41) by adding the positivity constraint as

min ∥M z∥2 s.t. ∥z∥2 = 1 and z ≥ 0. (42)

Solving the optimization problem (42) is hard due to the
nonconvexity of the feasible set (See Fig. 3). The easiest way
to convexify this problem is to replace the arc {∥z∥2 = 1,
z ≥ 0} on the unit sphere with its chord {1T z = 1, z ≥ 0}.
This means the problem is modified as

min ∥M z∥2 s.t. 1T z = 1 and z ≥ 0. (43)

Solving (43) is now easy using some well-developed convex
programming method. The above modification of Alg. 1 is
summarized in Alg. 2 under the name optimization-based
factorization.

Algorithm 2 Optimization-Based Factorization

B. No Approximation Error

If there is no approximation error, i.e. W1 = 0, (35)
simplifies to

Y = "SX + W2,

and so (P0) becomes

min
"∈DN∗ ,X∈RM×J

∥Y −"SX∥F . (P2)

Following the same strategy for solving (P1), we first fix "
and solve for X as

XLS(") = ("S)†Y = (("S)T ("S))−1("S)T Y

= (ST"2 S)−1 ST"Y . (44)

Substituting into (P2) we get

"LS = min
"∈DN∗

∥Y −"S(ST"2 S)−1 ST"Y∥F . (45)

This nonlinear least squares problem seems to be intractable.
Instead of solving (45), we can heuristically solve for " and X
using alternating least squares. In particular, (44) solves
for X in terms of ". Conversely, if X is fixed, then
"LS(X) = diag(ϕ̂) can be solved element-wise as

ϕ̂i = arg min
ϕi ∈R

∥yT
i − ϕi sT

i X∥2 = sT
i X yi

sT
i X XT si

, (46)

for i = 1, . . . , N , where sT
i and yT

i are i -th rows of S and Y
respectively. If we insist in the positivity of albedos, it is clear
that (46) should be modified as

ϕ̂i = arg min
ϕi ≥ε

∥yT
i − ϕi sT

i X∥2 =
[

sT
i X yi

sT
i X XT si

]

+
, (47)

where ε is an arbitrarily small positive number, and [·]+ is
a short notation for max(·, ε). Putting (44) and (47) together,
we arrive at the so called alternating factorization, described
in Alg. 3.

VII. COMPUTATIONAL ISSUES

Implementation of Algs. 1 and 2 is costly due to the large
size of the SVD/optimization problem. The size N of vector z
is equal to the number of pixels in an image which is typically
large. Nonetheless, we can reduce the size of the problem
significantly by observing that

YJ = "J SJ X, ∀J ⊂ N , (48)
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where "J = diag({ϕi }i∈J ). Now "J and X can be found by
solving a similar SVD/optimization problem of size |J | ≪ N .
Once X is found, the full matrix " can be recovered element-
wise as in Alg. 3. If the equation is exact, the subset J
can be chosen arbitrarily as long as SJ has NSFR. Recall
from Proposition 3 that SJ being NSFR also implies that
S is NSFR. However, if it is noisy, a careful selection of
J for stable recovery has to be done. The following result
characterizes the deviation of a singular vector associated
with the smallest singular value of a matrix from the actual
solution of the corresponding homogeneous equation under
some perturbation. This will serve as a guidance for choosing
a “good” subset J .

Proposition 4: Suppose A is a matrix with condition
number κ(A) and δA is a perturbation such that A + δA
has a nontrivial null space. Let z and z + δz be unit norm
singular vectors associated with the smallest singular values
of A and A + δA, respectively. Then we have the following
bound

∥δz∥2 # 1 + 2κ2(A)
∥δA∥2

∥A∥2
, (49)

where the approximate inequality # assumes that
(δA)T δA ≈ 0.

Proof: Let σ1(A) and σn(A) be the largest and smallest
singular values of A respectively. z being the singular vector
associated with the smallest singular value of A means

AT Az = σ 2
n (A)z. (50)

Since A + δA has nontrivial null space, its smallest singular
value must be 0, and so

(A + δA)(z + δz) = 0,

which is also equivalent to

(A + δA)T (A + δA)(z + δz) = 0. (51)

Ignoring the second order term (δA)T δA, we can rearrange
terms of (51) and take the norm of both sides to get

∥AT Aδz∥2 = ∥AT Az +
(

AT δA + (δA)T A
)

(z + δz)∥2

= ∥σ 2
n (A)z +

(
AT δA + (δA)T A

)
(z + δz)∥2

≤ σ 2
n (A)∥z∥2 + ∥

(
AT δA + (δA)T A

)
(z + δz)∥2

≤ σ 2
n (A) + ∥AT δA + (δA)T A∥2 · ∥z + δz∥2

Algorithm 4 RANSAC-Based Factorization

≤ σ 2
n (A) + ∥AT δA∥2 + ∥(δA)T A∥2

≤ σ 2
n (A) + 2∥A∥2∥δA∥2

= σ 2
n (A) + 2σ 2

1 (A)
∥δA∥2

∥A∥2
.

On the other hand

∥AT Aδz∥2 ≥ σ 2
n (A)∥δz∥2. (52)

Hence

∥δz∥2 ≤ 1 + 2
σ 2

1 (A)

σ 2
n (A)

· ∥δA∥2

∥A∥2
= 1 + 2κ2(A)

∥δA∥2

∥A∥2
. (53)

"
Back to the issue of choosing a “good” subset J , for a

particular J , we want to solve for the eigenvector associated
with the smallest eigenvalue of the matrix M(J ) = (I −
SJ S†

J ) ⊙ (YJ Y T
J ). On the one hand, Proposition 4 suggests

that in order to have a stable solution, J should be chosen
so that the condition number of M (J ) is small. On the other
hand, we also want the nullity of M (J ) to be numerically
close to 1 in some sense so that the eigenvector associated
with the smallest eigenvalue is close to the real solution.
One heuristic way to measure this closeness is to compute
the drop from the second smallest eigenvalue λN−1(MJ )
to the smallest eigenvalue λN (MJ ) relatively to the largest
eigenvalue λ1(MJ ) of M(J ). Thus, we heuristically combined
these two observations to define a single quantity associated
with a subset J to measure the numerical rank-(N − 1) of
M(J ) as

ρ(J ) = 1
κ(MJ )

· λN−1(MJ ) − λN (MJ )

λ1(MJ )

= λN (MJ )λN−1(MJ ) − λ2
N (MJ )

λ2
1(MJ )

. (54)

We will search for J with largest ρ(J ) over all subsets
of N . However, this leads to an NP combinatorial optimization
problem. We propose instead an algorithm to choose the best
J in terms of ρ(J ) over just a relatively small number of
random subsets of N . Alg. 4 is similar, to some extent, to the
RANSAC (RANdom SAmple Consensus) [8], a commonly
used algorithm in computer vision for model fitting. We will
therefore call it RANSAC-based factorization.
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Fig. 4. Dataset 1: 12 images of a real object under different directional light
sources.

Fig. 5. Dataset 2: 12 images of a real object under different directional light
sources.

VIII. EXPERIMENTAL RESULTS

A. Dealing With Color Images

For inverse rendering from color images, we need to
solve (13) for the three color channels simultaneously to
eliminate the scaling ambiguity of the albedos across channels.
Specifically, let Y R, Y G, Y B be the image matrices for red,
green, and blue channels respectively. Also, let ϕR,ϕG,ϕB
be the albedo vectors associated with red, green, and blue
channels respectively. Then the actual matrix factorization we
want implement is given by the concatenating equation

⎡

⎣
Y R
Y G
Y B

⎤

⎦ = diag

⎛

⎝

⎡

⎣
ϕR
ϕG
ϕB

⎤

⎦

⎞

⎠ ·
⎡

⎣
S
S
S

⎤

⎦ X . (55)

Forming this equation is important for implementations, but
the equation itself is mathematically the same as (13) and
does not change any of the above theoretical results.

B. Simulations

Simulations are performed on two real datasets,4 each
of which has J = 12 images of an object as shown
in Figs. 4 and 5, using MATLAB with the convex program-
ming cvx provided by [28]. The images were taken under
different directional light sources. The light directions of the

4The data and code for photometric stereo are available at:
http://pages.cs.wisc.edu/∼csverma/CS766_09/Stereo/stereo.html.

Fig. 6. Dataset 1: Reconstruction of albedo maps in red, green and blue
channels from left to right using either (a) alternating or (b) RANSAC-based
factorization.

Fig. 7. Dataset 2: Reconstruction of albedo maps in red, green and blue
channels from left to right using either (a) alternating or (b) RANSAC-based
factorization.

12 sources can be calibrated and will be used as a ground
truth for the inverse rendering.

The normal map of the object was estimated from the
images and light directions using photometric stereo. We want
to note that the light directions were only used to estimate the
geometry. In our inverse rendering, the lighting, however, is
assumed to be unknown and arbitrary. Of course, in practice
we are aiming at estimating the geometry directly using some
depth-based 3D modeling framework. The spherical harmonic
matrix S was then computed from the surface normals of the
object using (9) and (11), with M = 9. The size of each
image is 340 × 512; excluding zero-intensity pixels results
in N = 35983 for dataset 1, and N = 72561 for dataset 2.
We can easily confirm that the spherical harmonic matrix S
indeed has NSFR for both datasets by using Proposition 3
and Corollary 1. In particular, we randomly chose an index
subset J and check if the rank of the matrix (I − SJ S†

J ) ⊙
(SJ ST

J ) is equal to |J | − 1.
The albedo and lighting matrices "̂ and X̂ were estimated

using either Alg. 3 or 4. The reconstructed albedo maps
for 3 color channels using both methods are visualized
in Figs. 6 and 7 using the jet color map. To quantify the
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TABLE I

DATASET 1: ANGLES BETWEEN THE RECONSTRUCTIONS OF LIGHT SOURCE DIRECTIONS AND THEIR GROUND TRUTHS USING

DIFFERENT METHODS: ALTERNATING AND RANSAC-BASED FACTORIZATIONS. THE MEAN ERRORS OVER ALL

12 LIGHT SOURCES ARE 6.8 DEGREES FOR ALTERNATING AND 2.7 DEGREES FOR RANSAC-BASED

TABLE II

DATASET 2: ANGLES BETWEEN THE RECONSTRUCTIONS OF LIGHT SOURCE DIRECTIONS AND THEIR GROUND TRUTHS USING

DIFFERENT METHODS: ALTERNATING AND RANSAC-BASED FACTORIZATIONS. THE MEAN ERRORS OVER ALL

12 LIGHT SOURCES ARE 9.9 DEGREES FOR ALTERNATING AND 1.8 DEGREES FOR RANSAC-BASED

Fig. 8. Dataset 1: Reconstruction of one of the original images (a) using
either alternating (b) or RANSAC-based factorization (c) with corresponding
SNRs. The average SNRs over all given twelve images are 24.9786 dB for
alternating and 24.8493 dB for RANSAC-based.

Fig. 9. Dataset 2: Reconstruction of one of the original images (a) using
either alternating (b) or RANSAC-based factorization (c) with corresponding
SNRs. The average SNRs over all given twelve images are 27.1829 dB for
alternating and 27.4583 dB for RANSAC.

accuracy of our model, the twelve original images in Y were
compared in SNR (Signal-to-Noise Ratio) to the reconstructed
images by forming Ŷ = "̂SX̂ . The results are shown
in Figs. 8 and 9 for one of the images in each dataset.

Although both methods can reconstruct the original images
reasonably well, the reconstruction error itself does not
quantify the accuracy of estimating albedos and lighting
individually. Therefore we did another step to estimate the
light directions for which we have ground truths. In particular,
from (9), the x, y, z components of the light directions can
be extracted from rows 2, 3, 4 of the lighting matrix X ,
respectively. The angle between each recovered light direction
and its ground truth was then computed for all 12 sources and
shown in Tabs. I and II. It can be seen that the RANSAC-based

Fig. 10. Dataset 1: Random relighting using (a) alternating and (b) RANSAC-
based factorization. The magnifications of an interconnection region are shown
respectively below in (c) and (d).

is much more accurate than the alternating factorization, with
a mean error of 2.7 degrees versus 6.8 degrees for dataset 1,
and 1.8 degrees versus 9.9 degrees for dataset 2.

For the purpose of relighting, new images were rendered
by randomly generating a novel lighting matrix Xnew
and computing Y new = "̂SXnew. The relit images
using alternating and RANSAC-based factorizations are
demonstrated in Figs. 10 and 11. It can be subjectively
observed from Fig. 10 that relighting using the alternating
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Fig. 11. Dataset 2: Random relighting using (a) alternating and (b) RANSAC-
based factorization.

factorization behaves poorly at the interconnection regions
of the object where our convex assumption is violated. It is
because the measurement noise model that the algorithm is
based on does not account for approximation error resulting
from the nonconvexity of the object. The difference between
the two relighting methods is less visible in Fig. 11 because
the ‘rock’ object does not have abrupt transitions like the
neck of the ‘cat’ object. We remark that the implementations
of the alternating algorithm were faster. In contrast, relighting
using RANSAC-based factorization, at the cost of increasing
the computations, produces very realistic looking images that
are well-behaved at the interconnection regions.

IX. CONCLUDING REMARKS

We have studied the inverse rendering problem of a
Lambertian convex object with distant light sources. Under
these assumptions, all possible images of the object live close
to a low-dimensional linear subspace spanned by the first few
spherical harmonics. The inverse rendering thus becomes a
factorization of the image matrix into a product of a diagonal
albedo and a lighting matrix with a known SH matrix in the
middle. This special matrix factorization is unique if and only
if the SH matrix associated with the object has nonseparable
full rank, a stronger notion of full rank. In the noiseless
case, the exact solution (up to some scale) can be found
via an SVD-based algorithm. When an approximation error is
present, the SVD-based algorithm also yields the least squares
solution to the factorization. An optimization-based algorithm
is introduced to enforce the positivity of albedos. Because the
number of pixels in each images is typically large, a heuristic
RANSAC-based algorithm is proposed to reduce the size of the
optimization problem. When a measurement noise is present
in the model, an alternating algorithm is introduced instead
for the factorization.

APPENDIX A
PROOF OF PROPOSITION 2

A. KFR⇒NSFR

Suppose N1 and N2 are nonempty disjoint subsets such
that N1 ∪ N2 = N . We will show that rank(SN1) +
rank(SN2) ≥ M + 1. Indeed, since S has full Kruskal rank,
any k rows of S are linearly independent for all k ≤ M . Thus,
rank(SN1) = min{M, |N1|}, and rank(SN2) = min{M, |N2|}.

It follows that

rank(SN1) + rank(SN2) = min{M, |N1|} + min{M, |N2|}
≥ min{2M, M + |N1|, M

+ |N2|, |N1| + |N2|}
(a)
≥ min{M + 1, N} = M + 1,

where (a) follows from |N1| + |N2| = |N | = N .

B. NSFR⇒SFR

For i ∈ N , since S has NSFR, it must be that

rank(S{i}) + rank(SN \{i}) ≥ M + 1.

However, since S contains no zero rows, it is clear that
rank(S{i}) = 1. Hence, rank(SN \{i}) ≥ M . On the other hand,
rank(SN \{i}) ≤ rank(S) = M . Therefore, rank(SN \{i}) = M ,
or S has strong full rank.

C. SFR⇒FR

If S has strong full rank, then for i = 1 we have
rank(S) ≥ rank(SN \{1}) = M . Since S ∈ RN×M , we also
have rank(S) ≤ M . Thus, rank(S) = M , or S has full rank.

Now consider the reverse implications. If N = M + 1, it is
obvious that the definitions of strong full rank and Kruskal
full rank coincide. Thus, SFR⇒KFR⇒NSFR. Finally, for
N ≥ M + 2 we can show that the reverse implications are
not true by constructing simple counterexamples. We leave
that to the readers due to the space constraint. For a visual
proof, see Figure 2.

APPENDIX B
PROOF OF PROPOSITION 3

Let N1 and N2 be nonempty disjoint subsets of N such that
N = N1∪N2. We need to show that rank(SN1)+rank(SN2) ≥
M + 1. Indeed, consider the following cases:

If J ⊂ N1 then

rank(SN1) + rank(SN2) ≥ rank(SJ ) + rank(SN2)

= M + rank(SN2) ≥ M + 1.

If J ⊂ N2, similarly we also have rank(SN1) +
rank(SN2) ≥ M + 1.

If J is not a subset of either N1 or N2, put J1 = J ∩N1,
and J1 = J ∩ N1. It is evident that J1,J2 are nonempty
disjoint subsets of J such that J = J1 ∪ J2. Since SJ has
nonseparable full rank, it must be that

rank(SN1) + rank(SN2) ≥ rank(SJ1) + rank(SJ2) ≥ M + 1.

Hence, S has NSFR, completing the proof.

APPENDIX C
PROOF OF LEMMA 1

For all I ⊂ N , we can write

ŜI = [SI |(%S)I ] (a)= [SI |SI X̃ X†],
where (a) follows from (18). Note that every column of
SI X̃ X† is a linear combination of columns of SI . This implies
that R(ŜI) = R(SI). Hence

rank(ŜI) = rank(SI), ∀I ⊂ N .
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APPENDIX D
PROOF OF LEMMA 2

We first show that {[sT
i |ψi sT

i ]T }i∈B are linearly
independent. Suppose {αi }i∈B satisfies

∑

i∈B
αi [sT

i |ψi sT
i ]T = 0,

which implies
∑

i∈B αi si = ∑
i∈B αiψi si = 0. By the

independence of {si }i∈B, it must be that αi = 0,∀i ∈ B,
or {[sT

i |ψi sT
i ]T }i∈B are linearly independent.

Next, it follows from Lemma 1 that

dim
(
R(Ŝ

T
I )

)
= dim

(
R(ST

I )
)

= |B|.

It means that {[sT
i |ψT

i sT
i ]T }i∈B is a set of linearly independent

vectors in the space R(Ŝ
T
I ) whose cardinality is equal to the

dimension of the space. Thus, it is a basis for R(Ŝ
T
I ).

APPENDIX E
PROOF OF THE NECESSITY PART OF THEOREM 1

Suppose that S does not have NSFR. We will construct
a solution ("̃, S̃) to (13) such that either "̃ is not a scaled
version of "0 or X̃ is not a scaled version of X0. Consider
the following cases.

Case 1: S has a zero row, say the first row. It follows that
the first row of Y is also zero. We can therefore simply choose
X̃ = X0 and "̃ = diag(2, 1, . . . , 1) ⊙"0.

Case 2: S does not have full column rank. It means that
columns of S are linearly dependent. There thus exists a matrix
X̃ that is not a scaled version of X0 such that SX̃ = SX0.
We then choose ("0, X̃) as a solution.

Case 3: S has full column rank with no zero rows. It follows
from the definition of NSFR that there exists a nontrivial
subset J of N such that rank(SJ ) + rank(SJ c) = M . Let
% = diag(ψ), where ψ j = 2,∀ j ∈ J and ψ j = 1,∀ j ∈ J c.
Consider the matrix Ŝ = [S|%S].

We first show that rank(ŜJ ) = rank(SJ ). Let {sk}k∈K be
a basis for R(ST

J ), we can show that {[sT
k |2sT

k ]T }k∈K is a

basis for R(Ŝ
T
J ). Indeed, similarly to the proof of Lemma 2,

those vectors are independent. Moreover, any row of ŜJ can
be written as

[sT
j |2sT

j ] =
∑

k∈K
αk[sT

k |2sT
k ], ∀ j ∈ J , (56)

where s j = ∑
k∈K αk sk is the linear representation of s j in

terms of {sk}k∈K. This implies that {[sT
k |2sT

k ]T }k∈K is a basis

for R(Ŝ
T
J ), and so rank(ŜJ ) = rank(SJ ) = |K|. Similarly,

rank(ŜJ c) = rank(SJ c). Therefore

rank(Ŝ) ≤ rank(ŜJ ) + rank(ŜJ c)

= rank(SJ ) + rank(SJ c) = M. (57)

On the other hand, if {si }i∈B is a basis for R(ST ), then
similarly to the proof of Lemma 2, {[si |ψi si ]}i∈B are linearly
independent. It means that the dimension of R(Ŝ

T
) is at

least |B|, or

rank(Ŝ) ≥ rank(S) = M. (58)

Combining (57) and (58) yields rank(Ŝ) = rank(S) = M .
It follows that each column of the matrix %S must be a linear
combination of columns of S. In other words, there exists a
matrix & such that

%S = S&. (59)

Choose "̃ = diag(ϕ̃), where ϕ̃ j = ϕ j/2,∀ j ∈ J and
ϕ̃ j = ϕ j , ∀ j ∈ J c. Left-multiplying by "̃ and right-
multiplying by X0 to both sides of (59) we get

"0 SX0 = "̃SX̃, (60)

where X̃ = &X0. It shows that ("̃, X̃) is a solution to (13).
However, by the construction, "̃ is not a scaled version of ".

APPENDIX F
PROOF OF LEMMA 3

Let Q = I − SS†. It is easy to check that Q is a projection
matrix, i.e., Q2 = Q = QT . Since Di is a diagonal matrix
for all j , we have

( Q D j )
T = DT

j QT = D j Q, j = 1, . . . , J.

Hence

AT = [D1 Q|D2 Q| · · · |DK Q].

It follows that

AT A =
J∑

j=1

D j Q2 D j =
J∑

j=1

D j Q D j . (61)

Thus for any i, k ∈ {1, 2 . . . , N}, we get

(AT A)ik =
J∑

j=1

N∑

m,n=1

(D j )im ( Q)mn(D j )nk

=
J∑

j=1

(D j )ii ( Q)ik (D j )kk (62)

= ( Q)ik

J∑

j=1

(Y)i j (Y )kj (63)

= ( Q)ik

J∑

j=1

(Y)i j (Y T ) j k

= ( Q)ik (YY T )ik ,

where (62) follows from the diagonality of Di s and (63)
follows from the definition of Di s. This implies that AT A =
Q ⊙ (YY T ). Substituting Q by I − SS† completes the
proof.
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