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Downsampling of Signals on Graphs
Via Maximum Spanning Trees

Ha Q. Nguyen and Minh N. Do, Fellow, IEEE

Abstract—Downsampling of signals living on a general weighted
graph is not as trivial as of regular signals where we can simply
keep every other samples. In this paper we propose a simple, yet
effective downsampling scheme in which the underlying graph is
approximated by a maximum spanning tree (MST) that naturally
defines a graph multiresolution. This MST-based method signifi-
cantly outperforms the two previous downsampling schemes, col-
oring-based and SVD-based, on both random and specific graphs
in terms of computations and partition efficiency quantified by
the graph cuts. The benefit of using MST-based downsampling for
recently developed critical-sampling graph wavelet transforms in
compression of graph signals is demonstrated.

Index Terms—Bipartite approximation, downsampling on
graphs, graph multiresolution, graph wavelet filter banks,
max-cut, maximum spanning tree, signal processing on graphs.

I. INTRODUCTION

T HE extension of the signal processing field to signals
living on general graphs (such as meshes, sensor, trans-

portation, neuronal networks, etc.) has recently been drawing
a great deal of interest [1]–[7]. Classical signal processing can
be considered as a special case of signal processing on graphs;
for example, a regular 1-D discrete signal can be treated as
a signal defined on a line graph whose each constant-weight
edge connects two consecutive signal samples. Unlike regular
domains in classical signal processing, the irregular topology
of the underlying graphs, on which the signals are indexed,
poses many difficulties for even basic signal operations such
as shifting, modulating, and downsampling [1]. The focus of
this paper is on the design of efficient downsampling operators
and graph multiresolution which are necessary components of
any multiscale transforms such as the critical-sampling graph
wavelet filter banks (GWFBs) [4], [5].
A downsampling (by a “factor” of 2) of signals living on a

weighted graph can be considered as a bipartition of the graph
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vertices into two disjoint subsets, one is kept and one is dis-
carded. One way to quantify the goodness of a downsampling
is to use the cut-index, fraction of total weight of edges con-
necting the two subsets over the total weight of all edges. The
higher the cut-index, the more dependent the two subsets, and
so the more graph structure can be embedded in one of them.
The cut-index of downsampling regular signals, or in general,
signals indexed by a bipartite graph is equal to 1, the highest
value it can be. For general graphs, finding the best downsam-
pling is equivalent to a max-cut problem which is NP-complete
[8] and so intractable for large graphs.
In 2012, Narang and Ortega [4] introduced the coloring-

based downsampling as a component of the GWFBs, which
are then subsequently developed in [5]. In this approach, the
original graph is first decomposed into a sequence of bipartite
subgraphs based on the graph coloring. The downsampling is
then done by partitioning the graph successively according to
the bipartite subgraphs. The drawback of this method is that
the problem of proper graph coloring is also NP-complete [8]
which can be done by a backtracking sequential coloring (BSC)
algorithm [9]. The complexity can be reduced by some of the
greedy coloring algorithms such as DSATUR (Degree of Satu-
ration) [10], but the number of colors may not be minimal. Fur-
thermore, no graph reductions have been proposed to reconnect
the vertices of the downsampled subset into a graph. That is, a
graph multiresolution is not available for this method.
More recently, Shuman et al. introduced [3] a new downsam-

pling scheme inwhich the graph bipartition is induced by the po-
larity of the eigenvector associated with the largest eigenvalue
of the graph Laplacian. This spectral graph theory [11] approach
is motivated by the approximate coloring [12] and nodal theory
[13]. The polarity-based bipartition is then followed by a Kron
reduction [14] and a graph sparsification [15] in order to re-
connect the vertices in the kept subset while maintaining the
sparsity of the subgraph. As the bipartition involves computing
the SVD (Singular Value Decompositions) of the graph Lapla-
cian, we will refer to this method as SVD-based downsampling.
Although a graph multiresolution can be achieved by repeating
the procedure on the downsampled subgraphs, the main disad-
vantage of this method is the complexity of the SVD
which does not scale very well with the number of vertices .
In addition, the SVD-based downsampling does not guarantee
the connectedness as well as bipartiteness of the graph multires-
olution, and thus is not applicable to the GWFBs.
We propose in this paper the maximum spanning tree (MST)-

based downsampling in which a graph mutiresolution can easily
be achieved by approximating the original graph with a max-
imum spanning tree—the skeleton of the graph. The graph mul-
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tiresolution is naturally defined by the nice structure of the tree,
which is itself a special bipartite graph. Thus, only a simple
connecting rule is needed to form the subgraphs. The MST can
also be found very fast [16], [17] in time, where

is the number of graph edges. We show that for bipartite
graphs, theMST-based downsampling actually produces a max-
cut. The experiments also show that, for general graphs, the
cut-indices of the proposed downsampling are higher than those
of coloring-based and SVD-based methods while the computa-
tion time is significantly reduced. We also demonstrate the use
of MST-based downsampling in GWFBs that yields better per-
formance in terms of signal compression.
The rest of the paper is organized as follows. Section II intro-

duces the notations and terminologies, and reviews some of the
related work. Section III discusses the proposed downsampling
scheme. Section IV provides simulations on both random and
specific graphs. Section V draws some concluding remarks.

II. RELATED WORK

A. Notation and Terminology

A weighted graph comprises a set of vertices
and a weight function . The set of edges

consists of all elements in with nonzero weights. Without
loss of generality, we assume throughout this paper that

for some integer . Thus, a weighted graph
can be completely characterized by its adjacency matrix

whose entries are defined by , for
. A graph is called undirected if is

symmetric; loopless if ; and connected if there
exists a path connecting any pair of vertices. In this paper we
restrict ourselves to connected loopless undirected graphs.
The degree matrix of a graph with adjacency matrix is

a diagonal matrix of size , where the diagonal entries are
given by

We say the weights are normalized if . The unnor-
malized, normalized, and random walk graph Laplacians are
respectively defined by

For a subset of , let denote the bipartition (or
cut) of into two disjoint sets and . The cut-value
and cut-index of such a bipartition w.r.t. weight function are
respectively defined as

(1)

and

(2)

Fig. 1. Block diagram of a two-channel filter bank on a bipartite graph. Repro-
duced from [5, Fig. 1].

A graph is bipartite if there exists a bipartition whose cut-
index is 1. The two subsets of vertices generated by such a cut
are call independent sets of the bipartite graph. A graph is said
to be -colorable if its vertices can be labeled by colors such
that no edges connect two vertices of the same color. It is easy
to see that a graph is bipartite if and only if it is 2-colorable.
A spanning tree (ST) of a connected graph is another con-

nected graph without cycles that includes all the vertices and
a subset of edges of . is called a maximum spanning tree
(MST) of if its total edge weight is maximum over all pos-
sible STs of . If the graph is unweighted (all edge weights are
equal to 1), all STs are MST.
A signal indexed by a graph (graph signal) is treated simply

as a vector of length . However, unlike regular vectors, a graph
signal has a specific topology embedded in its indices. A down-
sampling operator of a graph signal is defined as a splitting of
the signal samples into two groups according to some biparti-
tion of the underlying graph.

B. Graph Wavelet Filter Banks
A (biorthogonal) GWFB [5] transforms a signal living on a

connected bipartite graph into wavelet coefficients of the same
cardinality (critical sampling) that are localized in both vertex-
and frequency-domain. Like a classical discrete wavelet trans-
form [18], a GWFB can be achieved by iterating (on the low-
pass channels) a two-channel filter bank as shown in Fig. 1. The
downsampling operators and respectively keep
the signal samples at lowpass and highpass vertices, defined by
the two independent sets of the underlying bipartite graph.
The filtering in vertex-domain of a graph signal is simply

a multiplication with a matrix. The four filters (matrices)
are however designed in the graph spectral

domain obtained by diagonalizing either the normalized Lapla-
cian (nonzeroDC GWFB) or the random walk Laplacian
(zeroDC GWFB). As usual, the design can be done entirely

in the lowpass channel; the highpass channel easily follows.
Vanishing moments of some order can also be embedded in
the perfect reconstruction conditions in the same manner as the
maximally-flat design of Cohen-Daubechies-Feauveau [19].
This results in compactly supported filters in vertex-domain
that are polynomials [2] of (for nonzeroDC) or (for
zeroDC). A GWFB with vanishing moments will be referred
to as .

C. Coloring-Based Downsampling
Wewant to emphasize that the design of GWFBs as described

in Section II-B is only valid for connected bipartite graphs.
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Fig. 2. Decomposition of a 4-colorable graph into two bipartite subgraphs. Re-
produced from [4, Fig. 4].

For general connected graphs, it is proposed in [4], [5] to de-
compose the graph into a minimum number of bipartite sub-
graphs using Harary’s algorithm. The two-channel filter bank
is then applied separably to each subgraph at each level of the
transform. If the graph is -colorable, Harary’s algorithm finds

bipartite subgraphs by splitting the vertices into two
independent sets according to the th bit of the color index,
for . The result of applying successively

bipartitions associated with the independent sets of the
bipartite subgraphs is exactly the partition of the graph vertices
into subsets induced from the coloring. Therefore, this sepa-
rable downsampling scheme can also be thought of as a down-
sampling by a “factor” of . The cut-index of the overall down-
sampling will be measured as the average of all cut-indices of
the bipartitions generated by the bipartite subgraphs.
Fig. 2 shows an example of bipartite graph decomposition on a
4-colorable graph.

D. SVD-Based Downsampling

The SVD-based downsampling includes 3 steps: bipartition,
graph reduction, and graph sparsification. In the first step, the
eigen-decomposition of the graph Laplacian is first computed.
The bipartition is then obtained from the polarity of

, the eigenvector associated with the largest eigenvalue of
, i.e., . In the second step, Kron’s
reduction [14] is applied to form a new Laplacian matrix that
defines a subgraph on the subset as follows:

where , and denotes the submatrix of
whose rows and columns are respectively indexed by and
, for , , 2.
As the Kron’s reduction is likely to generate a dense sub-

graph, a graph sparsification is applied on the reduced graph in
the third step. The spectral sparsification [15] involving random
sampling of graph edges and computing the resistance distances
[20] is described in [3, Alg. 1]. A graph multiresolution can be
generated by iterating the 3 steps above on the subgraphs. Fig. 3
illustrates a successive SVD-based downsampling on a sensor
network graph with or without graph sparsification.
It is important to note that the spectral sparsification does

not maintain the connectedness of the subgraph, although the
Kron’s reduction does. This means the SVD-based downsam-
pling is not applicable to GWFBs which are particularly de-
signed for connected graphs.

Fig. 3. (Reproduced from [3, Fig. 5]) Successive SVD-based downsampling on
a sensor network graph with or without spectral sparsification. (a)–(c) Repeated
largest eigenvector downsampling followed by Kron’s reduction. (d)–(f) The
same process with the spectral sparsification used immediately after each Kron
reduction.

III. MST-BASED DOWNSAMPLING

A. Max-cut Bipartition
It was proposed in [21] to downsample a graph signal along

the max-cut that best approximates the underlying graph with a
bipartite graph. Although finding amax-cut of an arbitrary graph
is NP-hard, we can use the cut-value/cut-index, as defined in (2),
as a measurement of the goodness of a downsampling operator.
The higher the cut-value, the better the downsampling. The in-
tuition for this observation is clear. As we want to reconstruct
the original signal after throwing away a subset of samples, the
higher the correlation between the kept and discarded subsets,
the better the interpolation can be done.
In the following, we give an analytical result to justify the

use of cut-value to quantify the expected linear interpolation
error given the signals are treated as random processes. More
precisely, we first define the cross-linear interpolation of a signal
with respect to a bipartition.
Definition 1: For a signal indexed on a graph with

normalized weights such that , and a
bipartition of the graph vertices, we define the cross-
linear interpolation of as

if ,
if . (3)

The corresponding interpolation error is measured by

In short, the samples on of are linear interpolated from
the samples on of , and vice versa. That justifies the
term “cross-linear interpolation.” Moreover, the weights used in
the linear interpolation formulas are exactly the weights of the
corresponding edges of the underlying signal graph which pre-
sumably quantify the similarity between signal samples. From
the filter bank point of view, this interpolation procedure can be
described by the diagram in Fig. 4.
Proposition 1: Suppose that is a signal indexed on a graph

with normalized weights, and that the entries of are
identically distributed with mean . Let be the cross-linear
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Fig. 4. Cross-linear interpolation of a signal indexed on a graph with normal-
ized adjacency matrix , with respect to a bipartition . The operator

denotes the downsampling followed by upsampling that zeros out the sam-
ples on , for , 2 and . Operator multiplies the input
signal as a column vector with the adjacency matrix .

interpolation of w.r.t. a bipartition . Then the expected
interpolation error is lower-bounded by

(4)

Proof: We can write

(5)

(6)

(7)

(8)

(9)

(10)

(11)

where (5) follows from the linearity of expectation; (6) follows
from the fact that , for every random variable
; (7) follows from the definition of ; (8) is due to

; (9) is due to ; (10)
follows from the normalization of and the definition of cut-
value; and (11) follows from the definition of cut-index. The
proof is completed.
The above result says that the expected linear interpolation

error is essentially lower-bounded by the complement of the
cut-index. Therefore, a max-cut indeed minimizes this bound,
and a bipartition with low cut-index will certainly amplify the
interpolation error. We want to remark the relation between the
cross-linear interpolation system in Fig. 4 and the two-channel
wavelet filter bank in Fig. 1. In the wavelet filter bank, the down-
sampling operator is given and the four filters are to be designed

as polynomials of to achieve perfect reconstruction; whereas
in the cross-linear interpolation system, the two analysis filters
are assumed to be identity matrices, the two synthesis filters
are fixed to be , and the downsampling operator is to be de-
signed to minimize the interpolation error if one of the channels
is missing. However, it is unknown whether the max-cut down-
sampling yields a better GWFB design in terms of wavelet ap-
proximation. This open topic requires further research.

B. MST-Based Bipartition

From the discussion in the previous subsection, wewould like
to design downsampling operators that yield high cut-indices1
and that can be fast implemented. Furthermore, because down-
sampling is often done successively on a graph multiresolution,
we also want a natural graph reduction to connect the subsam-
ples. As we will show, all of these criteria can be satisfied with
MST-based downsampling.
The idea of MST-based downsampling is to find a skeleton of

the graph that already has a multiresolution structure in it. Both
the graph partition and reduction will then be done through the
skeleton. As every connected graph must be spanned by a tree, a
special bipartite graph with hierarchical topology, it is desirable
to obtain the downsampling from a spanning tree of the graph.
On the other hand, we want the spanning tree to be as close
as possible to the original graph, and so a maximum spanning
tree needs to be chosen among all STs. For connected graphs,
the MSTs can be found by Prim’s algorithm [16] that essentially
starts with a random vertex and keeps adding the maximum pos-
sible edge in each step to expand the tree until it includes all
the vertices of the original graph. For unconnected graphs, a
maximum spanning forest (collection of MSTs) can be found
instead by Kruskal’s algorithm [17]. Both algorithms run in

time, which is much faster than the run-
ning time of the SVD-based downsampling since and
typically is . However, when the edge weights are not
pairwise distinct, the MST found by either Prim’s or Kruskal’s
algorithm is not necessarily unique. Further constraints may be
imposed for the selection of the MST among multiple solutions,
but will certainly slow down the algorithms. We found in exper-
iments that using a random solution of the MST is good enough
for the purpose of graph downsampling and filter design.
Suppose is an MST of . Let

denote the tree distance between vertices and ,
which is the number of edges of the shortest path in con-
necting and . The MST-based downsampling is then given
by the bipartition , where includes all vertices with
even tree distance from some root node , i.e.

(12)

To avoid any confusion, we stress that the MST is just a tool
for graph bipartition and reduction (as will be shown in the next
subsection). In general, the filter design should still be done on
the original graph, not on the MST itself. For the GWFBs that
are particularly designed for bipartite graphs, the filtering can be
performed on all the edges connecting the two subsets and

, that include all edges of .
1Actually, we want a maximum cut-index, but finding a max-cut is infeasible

for large dense graphs.
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C. Bipartite Graph Multiresolution

In order to generate a bipartite graph multiresolution that is
ready for a critical-sampling GWFB, we first find a series of
nested trees and then add back the edges removed from the
original graph, while still maintaining the bipartiteness of the
trees. For connecting the vertices of the downsampled subset
in (12), we follow the simple rule proposed in [1] where each
vertex in is connected to its grandparent vertex (also
in ) with the weight given by

(13)
where is the parent vertex of in and .
This connecting rule results in a downsampled graph

which is clearly also a tree. Therefore the above
downsampling and graph reduction procedures can be repeated
to generate a tree multiresolution ,
where is the number of scales. For , similarly
to (13), the weight function of tree is given by

(14)
for . Now the bipartite graph multiresolution

can be defined by assigning edge weights to
the nested subsets as follows

if ,
if and is even,
else,

(15)

for , and . For this weight function,
it is easy to see that for all

, and so is indeed a bipartite graph for all
. It is important to note that, in (15), the weights of are ob-
tained by mixing the weights of two different graphs, and .
This combination is reasonable because, from the connecting
rule (14), the edge weights of and are presumably in the
same range. Algorithm 1 summarizes the construction of a bi-
partite graph multiresolution from an arbitrary weighted graph
based on its maximum spanning tree.

Algorithm 1 MST-based Construction of Bipartite Graph
Multiresolution

Inputs: graph , number of scales

Outputs: nested bipartite graphs

1. Find an MST of using Prim’s algorithm.
2. Initialize .
3. Assign weights to the bipartite graph according to (15).
4. Fix a root node .
5. Find the subset .
6. Assign weights to the subtree according to (14).
7. Set .
8. Repeat steps 3–7 until .

Fig. 5. Examples of MST-based downsampling on line, ring and grid graphs.
Each row shows, from left to right, the original graph, its MST and the down-
sampled graph. (a)–(c): line graph, (d)–(f): ring graph, (g)–(i): grid graph. The
two independent subsets of each MST are labeled with red squares and blue cir-
cles. All the edge weights of the three original graphs are assumed to be equal
to 1. The edge weights of their downsampled graphs are maintained to be 1 ac-
cording to the connecting rule.

Although the focus of this paper is on the bipartite multires-
olution as a tool for the GWFBs, we want to remark that, when
the bipartiteness is not required (such as in Laplacian pyramid
schemes on graphs [22]), a general graph multiresolution

can also be generated in a similar way to
Algorithm 1. The only difference is that the weights assigned to
each should be

if ,
else. (16)

That means all of the removed edges while approximating
with the MST should be added back into the tree multireso-
lution , if they connect any two vertices
of a tree.

D. Illustrative Examples

Fig. 5 illustrates the MST-based downsampling on three
simple unweighted graphs often used to represent regular
signals: line, ring, and grid graphs. It can be seen that the
MST-based method yields the odd-even downsampling for
line and ring graphs that represent 1-D regular signals, and
the quincunx downsampling for grid graphs that represent
2-D regular signals. We want to note that while the line and
grid graphs are bipartite, the ring graph (often represents a
periodic signal) with an odd number of nodes is not. However,
by removing one of the links, the MST-based downsampling
still splits the signal into odd and even samples as expected for
regular signals. For a comparison, in the following we look at
the SVD-based downsampling of signals on the ring graph with
5 vertices as shown in Fig. 5(d). In particular, the unnormalized
graph Laplacian of such graph is given by
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Fig. 6. Maximum spanning tree of a semilocal 8-link regular graph repre-
senting the ‘Lena’ image and its first three levels of downsampling. The edges
are displayed in jet color map. (a) ‘Lena.png’; (b) semilocal image graph;
(c) maximum spanning tree; (d) first level; (e) second level; (f) third level.

The largest eigenvalue of this matrix has a multiplicity of 2
with two corresponding eigenvectors

Therefore the SVD-based downsampling keeps only the sam-
ples at indices {2,3,5} or {1,3}, depending on which vector
is chosen as the largest eigenvector . Either bipartition is
clearly not identical to the odd-even splitting as often done for
regular signals.
Another example of MST-based downsampling on a

semilocal 8-link regular image graph is shown in Figs. 6 and
7 for two different images. The image graph is constructed by
adding diagonal links to the grid graph and assigning Gaussian
weights to all of the links based on the intensities of the image.
Namely, the weight of an edge connecting pixels and is
given by

Fig. 7. Maximum spanning tree of a semilocal 8-link regular graph repre-
senting the ‘peppers’ image and its first three levels of downsampling. The
edges are displayed in jet color map. (a) ‘peppers.png’; (b) semilocal image
graph; (c) maximum spanning tree; (d) first level; (e) second level; (f) third
level.

where is the intensity of pixel , for . Inter-
estingly, as can be seen in the pictures, the links with small
weights representing the connections across strong edges of
the image have been dropped while forming the MST, and so
avoiding filtering across image edges. This suggests that the
MST-based downsampling scheme might also be useful for
edge-aware image filtering, an active research area in image
processing at the moment [23].

E. Special Case: Bipartite Graphs
Of course, approximating by its maximum spanning tree
may incur a loss of edge information. The question of how

good the MST approximation is in terms of the graph topology
and signal smoothness, and how it is connected to the wavelet
transforms2 is part of our ongoing research. Nonetheless, for the
special case of bipartite graphs, we can show that the MST-
based downsampling actually yields a max-cut with cut-index
being equal to 1.
2The connection between the smoothness of a graph signal and the sparsity

of its wavelet coefficients is still an open issue. See [24] for recent attempts on
this problem.
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TABLE I
AVERAGE PERFORMANCES ON 1000 RANDOM WEIGHTED GRAPHS WITH

, OF DIFFERENT DOWNSAMPLING SCHEMES.
THE DSATUR ALGORITHM WAS USED TO COLOR THE GRAPHS

Proposition 2: Suppose is an MST of a bipar-
tite graph , and is the subset of defined in
(12), then .

Proof: We only need to show that every edge of connects
a vertex of with a vertex of . Suppose there exist

such that . Let and be
the shortest paths of connecting to and to , respectively.
Let be the intersecting vertex of the two paths. Since the two
paths have the same parity (by the definition of ), it must
be that the lengths of paths and also have the
same parity. It follows that the cycle
of has odd length. Thus, the vertices of the cycle cannot be
two-colored, contradicting to the fact that is bipartite.
Similarly, we can show by contradiction that there does not

exist such that . Hence, the cut-
value is equal to the total weight of the graph, or the cut-index

.

IV. SIMULATIONS
This section demonstrates the performance of the proposed

MST-downsampling over the coloring-based and SVD-based
downsamplings. The implementations were done in Matlab
R2012a with MatlabGBL [25] and GraphBior-Filterbanks [26]
toolboxes, running on a PC with Intel Core i7-4500U CPU
X5650 @ 1.80 GHz 2.40 GHz, and 8GB of RAM.

A. Graph Downsampling
We compare the performances in terms of cut-index and

computation time of the three downsampling schemes on both
Erdös-Rényi random graphs [27] and the specific Minnesota
road graph [25]. For random graphs, the edges are first inde-
pendently generated according to a Bernoulli distribution of
parameter . The Gaussian weights are then assigned
to the edges as

(17)

where is the coordinates of vertex that is uniformly chosen
in the box . For some graphs, the BSC coloring [9] is very
slow, so we used DSATUR algorithm [10] instead for the col-
oring-based downsampling. Also, the cut-index of the coloring-
based downsampling on a graph was obtained by averaging all
the cut-indices of the biparite subgraphs. Recall that according
to Proposition 1, the higher the cut-index the better the down-
sampling, and the maximal value of cut-index is 1.0. The av-
erage results on 1000 random graphs are shown in Table I with
the MST-based method significantly outperforming the other
two.
For the Minnesota graph, we consider both unweighted and

weighted cases (with Gaussian weights defined in (17)) as
plotted in Fig. 8 where the edge maps are displayed in jet.

Fig. 8. Original graphs of Minnesota road [25]: (a) all weights are equal to
1, and (b) Gaussian weights of standard deviation . (a) Unweighted;
(b) weighted.

Fig. 9. Downsampling by different schemes on the unweightedMinnesota road
graph. The result of coloring-based downsampling is just a set of vertices (one of
the three colors (e)–(g)) without connections, and so the next levels of downsam-
pling are not available for this scheme. (a) SVD-based level 1; (b) MST-based
level 1; (c) SVD-based level 2; (d) MST-based level 2; (e) color 1; (f) color 2;
(g) color 3.

The subgraphs obtained by downsampling in two levels on the
unweighted and weighted Minnesota graphs are respectively
shown in Figs. 9 and 10. The performances are compared in
Tables II and III. Again, both cut-index and time favor the
MST-based downsampling.

B. Signal Compression

In this subsection, we demonstrate the benefit of using the
MST-based bipartite graph multiresolution for GWFBs over the
coloring-based bipartite decomposition in the sense of signal
compression. We adopt the -term nonlinear approximation
(NLA) framework in which the original is reconstructed from
its largest wavelet coefficients. The NLA performances of the
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Fig. 10. Downsampling by different schemes on the weighted Minnesota road
graph. The result of coloring-based downsampling is not shown because it is
just the same as for unweighted graphs. (a) SVD-based level 1; (b) MST-based
level 1; (c) SVD-based level 2; (d) MST-based level 2.

TABLE II
PERFORMANCES ON THE UNWEIGHTED MINNESOTA ROAD GRAPH OF

DIFFERENT DOWNSAMPLING SCHEMES. THE BSC ALGORITHM WAS USED
FOR GRAPH COLORING

TABLE III
PERFORMANCES ON THE WEIGHTED MINNESOTA ROAD GRAPH WITH
GAUSSIAN WEIGHTS OF DIFFERENT DOWNSAMPLING SCHEMES. THE

COLORING TIME IS THE SAME FOR UNWEIGHTED AND WEIGHTED GRAPHS

Fig. 11. A piece-wise constant signal on the Minnesota unweighted graph.
(a) Graph; (b) signal.

GWFBs using either MST-based or coloring-based downsam-
pling were computed for two different types of graph signals:
a synthetic piecewise constant signal on the Minnesota road
graph, and a real triangle mesh representing a human [28]. We
recall that the SVD-based downsampling is irrelevant in these

Fig. 12. Wavelet coefficients of a graphBior(2) zeroDC GWFB on three
different channels. Left column: coloring-based downsampling is used, right
column: MST-based downsampling is used. (a) LL channel; (b) LL channel;
(c) LH channel; (d) LH channel; (e) HH channel; (f) H channel.

Fig. 13. Reconstructions of the original signal from 30% of total wavelet
coefficients using coloring-based and MST-based downsampling schemes.
(a) Coloring: 5.462 dB; (b) MST: 39.8759 dB.

experiments because the graph multiresolution it creates may
be neither bipartite nor connected.
We first applied a graphBior(2) zeroDC GWFB using col-

oring-based downsampling to the piecewise constant signal on
the (unweighted) Minnesota graph shown in Fig. 11(b). The
reconstruction of the signal is done by retaining only a small
fraction of largest coefficients in magnitude. As the graph can
be properly colored with 3 colors, the coloring-based GWFB
yields 3 different channels of coefficients: LL, LH, and HH.
The filter bank cannot be repeated on the LL channel due to
the lack of a graph structure in it. In order to make a fair com-
parison, we applied a 2-level GWFB (of the same parameters)
with MST-based downsampling to the original signal that also
results in 3 channels: LL, LH, and H. The coefficients in the
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Fig. 14. Nonlinear approximation curve of applying a 6-level GWFB with
MST-based downsampling on a piecewise constant signal on the Minnesota
graph.

Fig. 15. Original 3D triangle mesh and its reconstructions from 22% of total
wavelet coefficients using coloring-based and MST-based downsampling
schemes. (a) Original; (b) coloring: 27 dB; (c) MST: 35 dB.

three channels associated with each downsampling scheme are
plotted in Fig. 12. The reconstructions of the signal from 30%
of all wavelet coefficients using the two methods are shown
in Figs. 13(a) and 13(b) together with the corresponding SNRs
(Signal-to-Noise Ratios). As can be seen, the SNR of using the
MST-based downsampling is much higher than that of the col-
oring-based. If we do not restrict the GWFB to 2 levels of de-
composition, the NLA curve of the piecewise constant signal
can even be better as shown in Fig. 14 for a 6-level MST-based
GWFB.
Next, we implemented a graphBior(3) zeroDC GWFB

using either coloring-based or MST-based downsampling on
the 3D triangle mesh shown in Fig. 15(a). A 3D mesh can be
considered as 3 different signals (associated with , , and
components) living on the graph induced by the topology of the
mesh. It was proposed in [7] to use a subdivision quadrilateral
mesh with a natural bipartite hierarchy, in order for the multi-
scale GWFBs to be applicable. However, in many cases we do
not have control over the topology of the mesh. Furthermore
quad meshes are not as popular as triangle meshes.

Fig. 16. Nonlinear approximation curves of applying a GWFB using coloring-
based and MST-based downsamplings.

Figs. 15(b) and 15(c) show the reconstructions of the original
mesh with corresponding SNRs from 22% of wavelet coeffi-
cients obtained from coloring-based and MST-based GWFBs,
respectively. The whole NLA curves of the two schemes are
both plotted in Fig. 16. It can be seen that the MST-based sig-
nificantly outperforms the coloring-based when a small fraction
of coefficients is used (low bit rate). This is because the low-
pass subband of the coloring-based GWFB still includes a large
number of coefficients that cannot be reduced due to the lack of
a graph multiresolution.

V. CONCLUSION

We have studied in this paper a novel downsampling scheme
for signals living on weighted graphs via maximum spanning
trees. The connected graph is first approximated by an MST,
then the graph multiresolution follows naturally from the tree
structure. This method is very simple, yet proves, through
experiments, several benefits including: fast computation, high
cut-index, and natural bipartite graph multiresolution. This
list makes it a perfect fit for the graph wavelet filter banks
where the design of multiscale downsampling operators is
challenging. Although we have shown for bipartite graphs that
the MST-based downsampling is indeed the same as a max-cut,
the analysis of the MST approximation is still missing for
general graphs and will be the focus of our future research.
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