Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Poisson Summation
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Generalized Poisson Summation Formulas for Continuous Functions of Polynomial Growth

H.Q. Nguyen, M. Unser, J.P. Ward

The Journal of Fourier Analysis and Applications, vol. 23, no. 2, pp. 442-461, April 2017.


The Poisson summation formula (PSF) describes the equivalence between the sampling of an analog signal and the periodization of its frequency spectrum. In engineering textbooks, the PSF is usually stated formally without explicit conditions on the signal for the formula to hold. By contrast, in the mathematics literature, the PSF is commonly stated and proven in the pointwise sense for various types of L1 signals. This L1 assumption is, however, too restrictive for many signal-processing tasks that demand the sampling of possibly growing signals. In this paper, we present two generalized versions of the PSF for d-dimensional signals of polynomial growth. In the first generalization, we show that the PSF holds in the space of tempered distributions for every continuous and polynomially growing signal. In the second generalization, the PSF holds in a particular negative-order Sobolev space if we further require that d∕2 + ε derivatives of the signal are bounded by some polynomial in the L2 sense.

@ARTICLE(http://bigwww.epfl.ch/publications/nguyen1701.html,
AUTHOR="Nguyen, H.Q. and Unser, M. and Ward, J.P.",
TITLE="Generalized {P}oisson Summation Formulas for Continuous Functions
	of Polynomial Growth",
JOURNAL="The Journal of {F}ourier Analysis and Applications",
YEAR="2017",
volume="23",
number="2",
pages="442--461",
month="April",
note="")

© 2017 Springer. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Springer. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved