Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Non-Decaying Signals
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Approximation of Non-Decaying Signals from Shift-Invariant Subspaces

H.Q. Nguyen, M. Unser

Journal of Fourier Analysis and Applications, vol. 25, no. 3, pp. 633-660, June 2019.


In our recent work, the sampling and reconstruction of non-decaying signals, modeled as members of weighted-Lp spaces, were shown to be stable with an appropriate choice of the generating kernel for the shift-invariant reconstruction space. In this paper, we extend the Strang-Fix theory to show that, for d-dimensional signals whose derivatives up to order L are all in some weighted-Lp space, the weighted norm of the approximation error can be made to go down as O(hL) when the sampling step h tends to 0. The sufficient condition for this decay rate is that the generating kernel belongs to a particular hybrid-norm space and satisfies the Strang-Fix conditions of order L. We show that the O(hL) behavior of the error is attainable for both approximation schemes using projection (when the signal is prefiltered with the dual kernel) and interpolation (when a prefilter is unavailable). The requirement on the signal for the interpolation method, however, is slightly more stringent than that of the projection because we need to increase the smoothness of the signal by a margin of d∕p + ε, for arbitrary ε > 0. This extra amount of derivatives is used to make sure that the direct sampling is stable.

@ARTICLE(http://bigwww.epfl.ch/publications/nguyen1901.html,
AUTHOR="Nguyen, H.Q. and Unser, M.",
TITLE="Approximation of Non-Decaying Signals from Shift-Invariant
	Subspaces",
JOURNAL="The Journal of {F}ourier Analysis and Applications",
YEAR="2019",
volume="25",
number="3",
pages="633--660",
month="June",
note="")

© 2019 Springer. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Springer. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved