Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  CT Reconstruction
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Differential Phase-Contrast x-Ray Computed Tomography: From Model Discretization to Image Reconstruction

M. Nilchian, M. Unser

Proceedings of the Ninth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'12), Barcelona, Kingdom of Spain, May 2-5, 2012, pp. 90-93.


Our contribution in this paper is two fold. First, we propose a novel discretization of the forward model for differential phase-contrast imaging that uses B-spline basis functions. The approach yields a fast and accurate algorithm for implementing the forward model, which is based on the first derivative of the Radon transform. Second, as an alternative to the FBP-like approaches that are currently used in practice, we present an iterative reconstruction algorithm that remains more faithful to the data when the number of projections dwindles. Since the reconstruction is an ill-posed problem, we impose a total-variation (TV) regularization constraint. We propose to solve the reconstruction problem using the alternating direction method of multipliers (ADMM). A specificity of our system is the use of a preconditioner that improves the convergence rate of the linear solver in ADMM. Our experiments on test data suggest that our method can achieve the same quality as the standard direct reconstruction, while using only one-third of the projection data. We also find that the approach is much faster than the standard algorithms (ISTA and FISTA) that are typically used for solving linear inverse problems subject to the TV regularization constraint.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/nilchian1201.html,
AUTHOR="Nilchian, M. and Unser, M.",
TITLE="Differential Phase-Contrast {x}-Ray Computed Tomography: {F}rom
	Model Discretization to Image Reconstruction",
BOOKTITLE="Proceedings of the Ninth {IEEE} International Symposium on
	Biomedical Imaging: {F}rom Nano to Macro ({ISBI'12})",
YEAR="2012",
editor="",
volume="",
series="",
pages="90--93",
address="Barcelona, Kingdom of Spain",
month="May 2-5,",
organization="",
publisher="",
note="")

© 2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved