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École polytechnique fédérale de Lausanne (EPFL), Switzerland.

ABSTRACT
We study the issue of localization in the context of isotropic
wavelet frames. We define a variance-type measure of lo-
calization and propose an algorithm based on calculus of
variations to minimize this criterion under the constraint
of a tight wavelet frame. Based on these calculations, we
design the variance-optimal wavelet (VOW). Finally, we
demonstrate the advantage of better localization in a practical
image-processing task.

Index Terms— Isotropic wavelets, steerable pyramid, lo-
calization.

1. INTRODUCTION

Isotropic wavelets allow for a multi resolution decomposi-
tion of images which is orientation-free, while keeping all
the desirable features of traditional wavelet bases. The re-
sulting transformations hence benefit from good stability,
approximation-theoretic properties, and fast implementation,
among others. A directional ingredient can then be incor-
porated in order to rotate the wavelets and build a steerable
pyramid [1, 2], which finds applications in many image-
processing problems.

The basis functions generating such wavelets are required
to be isotropic and to achieve a perfect reconstruction of
the image. These conditions can be fulfilled by selecting
a mother wavelet that is radially band-limited and satisfies
some frequency-domain constraints [3, 4]. The most com-
monly used profile is Simoncelli’s wavelet, as implemented in
the classical version of the steerable pyramid [1]. Its design is
inspired by biological vision [1] and has nice performance in
a wide class of applications. Other available isotropic designs
are the Meyer [5] and Papadakis wavelets [6].

The localization properties for isotropic wavelets have not
been fully investigated yet. Localization is important from
both theoretic and practical points of view. The theory dic-
tates that more localized wavelets tend to decouple and spar-
sify signals more efficiently [7]. Also in practice, wavelets
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with better localization result in lesser oscillations and fewer
truncation artifacts. We propose to address localization in the
present paper.

We measure the localization of isotropic wavelets through
a new criterion based on some normalized version of their
variance. Then, we optimize the wavelet profile based on this
measure. Guided by the outcome of this optimization, we
introduce a new wavelet with a relatively simple mathemat-
ical expression which is nearly optimal. To demonstrate the
benefit of an optimized design, we present examples of im-
age reconstruction from edges in the wavelet domain. The
underlying reconstruction task is formulated as a constrained
optimization problem and solved iteratively. We observe that
our optimized wavelet outperforms the previous ones in both
PSNR and visual senses.

The paper is organized as follows: In Section 2, we recall
the theoretical constraints and practical aspects related to the
design of isotropic wavelet frames. In Section 3, we propose
our measure of localization, the algorithm to optimize it, and,
finally, the designed wavelet based on the outcome of the al-
gorithm. Section 4 is devoted to the comparative evaluation
of the proposed wavelets in practical applications.

2. PRELIMINARIES ON THEORY AND
IMPLEMENTATION OF BAND-LIMITED

ISOTROPIC WAVELETS

Let ψ be a two-dimensional primal wavelet that generates the
tight wavelet frame

ψi,k(x) = 2−
i
2ψ(

x

2i
− k). (1)

Because of isotropy, we have that ψ(x) = ψ(∥x∥), which is
denoted by ψ(r) for short. According to the properties of the
Fourier transform, we know that the Fourier transform h of ψ
is also isotropic. We can hence specify it by h(ω), where ω =
∥ω∥. The radial wavelet is therefore the Hankel transform of
h

ψ(r) = H{h} (r) =
∫ ∞

0
h(ω) J0(rω) ω dω. (2)
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Now, let N be a natural number and let h satisfy the following
constraints [3, 4]:

h(ω) = 0 for ω > π, (3)
∑

i∈Z
|h(2iω)|2 = 1 for ω ∈ R+, (4)

dn

dωn
h(ω)

∣∣∣∣
ω=0

= 0 for n = 0, . . . , N. (5)

It can be shown that the band-limited wavelet frame de-
fined by (1) is tight, which is equivalent to the perfect-
reconstruction property.

From a practical point of view, the implementation of a
wavelet transform as a filter-bank requires the definition of a
pair of low- and high-pass filters, hL and hH , corresponding
to h. In this paper, we focus on wavelets with h supported on
[π4 ,π], for which the filters are described by

hH(ω) =

{
h(ω), ω < π

2

1, ω ≥ π
2

(6)

hL(ω) =

{
1, ω < π

4

h(2ω), ω ≥ π
4 .

(7)

Band-limited wavelet decompositions such as those of Si-
moncelli [1], Meyer [5], and Papadakis [6] lie in this category.

3. LOCALIZED ISOTROPIC WAVELETS

We first define a measure to quantify the localization of an
isotropic wavelet. Then, using the calculus of variations,
we find the gradient of this measure in the Hilbert space of
isotropic wavelet profiles subject to Condition (4). Using the
derived gradient, we propose a steepest-descent algorithm
to find the most localized wavelet. We finally proceed with
numerical optimization.

3.1. Measure of Localization

The measure of localization that we are going to use is a
variance-type criterion for the primal wavelet profile. Since
the properties of isotropic wavelets are given in terms of the
corresponding h function, we write the criterion as

V {h} =

∫∞
0 r2|H{h}(r)|2dr
∫∞
0 |H{h}(r)|2dr

, (8)

where H{h}(r) is as in (2). This criterion quantifies how
much the wavelet is concentrated around the origin. Small
values of V hence indicate better localization. Therefore, we
would like to find the minimizer of V .

3.2. Optimization Algorithm

Since the functional V is Fréchet-differentiable, we invoke
Riesz’ theorem to show that its infinite-dimensional gradient
is well-defined. This suggests using a gradient-descent algo-
rithm to minimize it. To simplify the manipulations, let us
write V as

V {h} =
A2{h}
A0{h}

, (9)

where

Am{h} =

∫ ∞

0
rm|H {h} (r)|2dr. (10)

Now, we have that

∇V {h} =
∇A2{h}
A0{h}

− ∇A0{h}
A0{h}

A2{h}
A0{h}

, (11)

so that we only need to determine the infinite-dimensional
gradient of Am for m = 0, 2.

To that end, we first calculate the Gâteaux derivative of
Am in the direction of a given function g as

DgAm{h} = lim
ϵ→0

V{h+ ϵg}−V{h}
ϵ

(12)

= 2

∫ ∞

0

rm H{h} (r)H{g} (r)dr

= 2

∫ ∞

0

rmH{h} (r)
(∫ ∞

0

g(ω)ωJ0(ωr)dω

)
dr

= 2

∫ ∞

0

g(ω)ω

(∫ ∞

0

rmH{h} (r)J0(ωr)dr

)
dω.

Thus, we get

∇Am{h}(ω) = ω

∫ ∞

0
rmH{h} (r)J0(ωr)dr, (13)

which is then plugged into (11) to yield the gradient of V .
Now, by going toward the opposite direction of the gradient
of V , we can try to find its minimizer. We, however, have to
be careful to stay on the manifold of band-limited isotropic
wavelets satisfying Constraints (3)-(5).

According to the explanations in Section 2, we only
consider wavelets supported on [π4 ,π] that automatically sat-
isfy (3) and (5). To enforce (4) after each step, we project the
obtained profile onto the manifold of profiles that satisfy (4).
By simple manipulation, we deduce the projection map

P{h}(ω) =
{√

h(ω)2 + h(2ω)2 π
4 < ω ≤ π

2√
h(ω2 )

2 + h(ω)2 π
2 < ω ≤ π

(14)

for the functions h supported on [π4 ,π].
Accordingly, the algorithm can be defined as
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Algorithm 1: Numerical Determination of VOW
1: initialize: h ∈ L2([

π
4 ,π])

2: initialize: η > 0
3: repeat
4: h̃ ← h− η ∇V {h}
5: h ← P{h̃}
6: until h converges
7: return h

3.3. Numerical Optimization

To implement Algorithm 1, we take 512 samples of h(ω) with
ω from π/4 to π uniformly on a logarithmic scale, hence sim-
plifying the computation of the projection map (14). To cal-
culate H{h}(r), we take the integral (2) from 0 to 100 with
the trapezoid method using 1,000 intervals. The algorithm
is run until the variations of V {h} fall under 10−3. With this
optimization procedure, we obtain the minimum value of 0.39
for V {h}. The resulting wavelet filter is depicted in Figure 1.
The ringing effect observed is due to the Gibbs phenomenon
that is the result of the truncation of the Fourier transform.

3.4. Near-Optimal Wavelets with Closed-Form Formula

To produce a usable wavelet profile, a closed-form formula is
needed to easily implement a multi scale algorithm. We thus
chose to fit some curves to the wavelet obtained numerically.
We suggest an approximation that makes use of trigonometric
tangent functions like in

h(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

√
1
2 +

tan(κ(1+2 log2
2ω
π ))

2 tan(κ) , ω ∈ [π4 ,
π
2 [√

1
2 − tan(κ(1+2 log2

ω
π ))

2 tan(κ) , ω ∈ [π2 ,π]

0, otherwise,

(15)

where κ ∈ [0, π
2 ). The value of κ is found to be 0.75. The

profile of this wavelet is superimposed in Figure 1. The corre-
sponding value of V is 0.40, which is not significantly differ-
ent from the optimal one. We thus call h in (15) the variance-
optimal wavelet (VOW).

4. PRACTICAL EXAMPLE

Using a given isotropic wavelet framework, we extract a
multi scale “edge map” containing only a small subset of the
wavelet coefficients, following the idea of [8, 9]. Using con-
strained optimization techniques, we then show that a good
approximation of the original image can be reconstructed
from this subset.
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Fig. 1. Output of numerical optimization, fitted wavelet pro-
file, and comparison with existing ones (Simoncelli, Meyer,
and Papadakis).

4.1. Image Reconstruction from Edges in the Wavelet Do-
main

Our goal translates to approximating the image using only
coefficients corresponding to wavelet-based edges.

4.1.1. Extraction of Wavelet-Based Edges

The generalized Riesz wavelet transform presented in [10] al-
lows one to easily generate gradient-like wavelets by specify-
ing an appropriate shaping matrix. Based on that, a wavelet
version of the standard Canny edge detector is implemented
using the multi scale gradient signal while keeping the tra-
ditional Canny workflow, as proposed in [8]. As an output,
we thus retain coefficients corresponding to singularities in
the wavelet domain. All coefficients from the coarsest scale
of the wavelet decomposition are kept so as to preserve the
brightness information of the image.

4.1.2. Image Reconstruction with Constrained Optimization

As proposed in [9], we predicate our algorithm on the two
following principles:

1. Wavelet-based edges must be conserved on the esti-
mated image.

2. The estimated wavelet coefficients must project back
onto an image while remaining as sparse as possible
subject to Constraint 1.

Reconstruction is therefore formulated as the constrained op-
timization problem (16), where s0 is the original wavelet-
transformed image, and k ∈ S do index the locations of the
wavelet-based edges. Thus, S describes the image coordi-
nates containing a non-zero value in the binary mask obtained
in the edge-detection step. The sparsity constrain translates
into the minimization of the ℓ1 norm of the wavelet transform
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Fig. 2. Wavelet-based edge reconstruction of Peppers. Left:
Binary mask featuring the wavelet coefficients saved for re-
construction at different scales (here, 4 scales were used).
Right: Final result after reconstruction using VOW.

of the image. The optimization is finally constrained by the
fact that we want to keep values of wavelet-based edges un-
changed.

f̂ = argmin
f

∥WHf∥1

s. t. [WHf ]k = [s0]k, ∀k ∈ S (16)

We use alternating the direction method of multipliers (ADMM)
[11] to solve the problem. We give in Figure 2 the recon-
structed image as well as the coefficients retained by our
multi scale wavelet-based edge detector for the Peppers test
image.

4.2. Results

We investigate the reconstruction performance of our wavelets
by comparing them to some of the most popular isotropic
wavelet profiles, namely, Simoncelli [1], Papadakis [6],
Meyer [5], and Shannon [2]. We evaluate results in terms
of the PSNR of the reconstructed image. We fix the num-
ber of edge coefficients as the arbitrary value of 7.5% of

Table 1. Reconstruction from Wavelet-Based Edges
Wavelet type PSNR [dB] V

Peppers Lena Barbara
VOW (15) 28.54 30.70 26.85 0.40

Simoncelli [1] 28.33 30.39 26.52 0.46
Papadakis [6] 27.65 29.46 26.39 0.49

Meyer [5] 27.03 29.31 25.81 0.67
Shannon [2] 25.77 27.99 25.66 +∞

the total number of wavelet coefficients in the image for all
experiments. All experiments are conducted with 4 scales
of decomposition. The reconstruction results shown are ob-
tained after 30 iterations of the ADMM algorithm.

As observed in Table 1, the VOW wavelet that we pro-
posed in (15) outperforms the classical ones. Another inter-
esting observation is that there exists a strong inverse relation-
ship between V and the PSNR. This confirms the relevance of
our localization criterion. To allow for a visual comparison of
the performance, we show in Figure 3 close-ups of the Bar-
bara images reconstructed using different wavelets. Again,
we observe that the result of the VOW is better than all the
other popular wavelets we tested.

5. CONCLUSIONS

In this paper, we propose the VOW, a new kind of band-
limited isotropic wavelet. The VOW is designed by optimiz-
ing a variance-type measure and hence benefits from optimal
localization. It was shown to outperform existing isotropic
wavelets in the task of reconstructing an estimate of an im-
age from a subset of its wavelet-based edges. Based on these
results, we believe our localized isotropic wavelet to be an
interesting candidate for image-processing tasks that involve
steerable wavelets.

Our study highlights Simoncelli’s wavelet as best second
choice. We surmise that this is due to its degree of localization
which, although suboptimal, is higher than that of the remain-
ing classical isotropic wavelets we considered here. In ad-
dition to Simoncelli’s biology-inspired construction, this ob-
servation can be used as a mathematical explanation for the
efficiency of this wavelet in many different applications.

Fig. 3. Wavelet-based edge reconstruction of Barbara. From left to right: original image, Shannon, Meyer, Papadakis, Simon-
celli, and VOW.
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