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Abstract— We investigate the performance of wavelet
shrinkage methods for the denoising of symmetric-α-stable (SαS)
self-similar stochastic processes corrupted by additive white
Gaussian noise (AWGN), where α is tied to the sparsity of the
process. The wavelet transform is assumed to be orthonormal
and the shrinkage function minimizes the mean-square approx-
imation error (MMSE estimator). We derive the corresponding
formula for the expected value of the averaged estimation error.
We show that the predicted MMSE is a monotone function of a
simple criterion that depends on the wavelet and the statistical
parameters of the process. Using the calculus of variations,
we then optimize this criterion to find the best performing
wavelet within the extended family of Meyer wavelets, which are
bandlimited. These are compared with the Daubechies wavelets,
which are compactly supported in time. We find that the wavelets
that are shorter in time (in particular, the Haar basis) are better
suited to denoise the sparser processes (say, α < 1.2), while
the bandlimited ones (including the Held and Shannon wavelets)
offer the best performance for α > 1.6, the limit corresponding
to the Gaussian case (fBm) with α = 2.

Index Terms— Sparse signal processing, self-similar processes,
discrete wavelet transforms, α-stable random variables,
denoising.

I. INTRODUCTION

A CLASSICAL example of a self-similar process is the
fractional Brownian motion (fBm) [1]. It can be inter-

preted as the fractional integral of a continuous-domain white
Gaussian noise (a.k.a. innovation) [2, Section 7.5.2]. The order
of integration γ provides a direct control of the degree of
fractality. This property makes the fBm a popular model of
real-world signals. Modelling textures in images [3], [4], traffic
in communication networks [5], and financial processes [6]
are a few examples of applications of fBms. Higher-order
generalizations of an fBm are characterized in [7].

The non-Gaussian counterpart of an fBm is the fractional
stable motion [8], [9], which is generated by replacing the
Gaussian innovation of the fBm by some α-stable white noise
with 0 < α ≤ 2 (the case α = 2 corresponds to the
Gaussian distribution and thus results in fBm). The fractional
stable motion has also the properties of long-range dependency
and self-similarity and enjoys a wide range of applications
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such as data traffic and network modelling [10]–[12],
physics [13], [14], geophysical researches [15], [16] and water
resource modelling [17].

For α < 2, however, there is a special feature of α-stable
processes that makes them fundamentally different from their
Gaussian cousins: the fact that all their second-order moments
(including the variance) are unbounded. This is equivalent to
their statistical distributions being heavy tailed, which is the
statistical transcription of the concept of sparsity [18], [19].
Again, this is very relevant to modern signal processing and
to the development of algorithms for the recovery of sparse
signals, including compressed sensing [20], [21].

To fully exploit the property of sparsity, it is still necessary
to expand the signal in an appropriate basis. In the case of
self-similar processes, the natural candidate is the wavelet
transform whose decorrelation properties have been studied
extensively in the Gaussian case [22]–[25]. Regarding the
α-stable processes, there is some prior work on the determina-
tion of the statistical distribution of wavelet coefficients [26],
as well as a recent demonstration of the ability of the
Haar transform to provide an independent-component analysis
of Lévy processes with γ = 1 and α < 1 [27]. Our
focus on wavelets is further motivated by the observation
that they perform remarkably well in a variety of practical
signal-processing tasks including coding [28], [29], signal
reconstruction [30], [31], and denoising [32]–[34]. This is
reinforced by fundamental results from approximation theory
on the optimality of wavelets for the N-term approximation
of functions in Besov spaces [35].

Our objective in this paper is to characterize the ability
of wavelets to optimally denoise self-similar symmetric-α-
stable (SαS) processes corrupted by additive white Gaussian
noise (AWGN). We focus on the traditional architecture where
the wavelet coefficients are processed independently of each
other [36]–[39]. Our first objective is to predict the mean (the
expected value) of the averaged estimation error (MAEE), in
order to be able to compare the denoising performance of dif-
ferent wavelet bases. Interestingly, we can relate this quantity
to a simple criterion: the Lα-norm of the γ th fractional integral
of the mother wavelet. The availability of this criterion enables
us to develop an infinite-dimensional optimization algorithm
to find the optimal frequency profile for a Meyer wavelet [40].

The use of a component-wise minimum mean-square error
(MMSE) estimation strategy ensures that the studied wavelet
denoisers are the best solutions among the broad family
of wavelet-shrinkage estimators. Moreover, it attains the
global optimum (MMSE signal estimation) when the wavelet
coefficients are perfectly decoupled (independent-component
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analysis). This suggests that the criterion can also be used as
an indirect measure of the decoupling performance of a given
wavelet basis for the underlying class of stochastic processes.
Thus, a good wavelet according to this criterion should also
be a good candidate for other applications such as coding.

To reach our goal, we have to prove two theorems that could
be of interest on their own right. The first is a result that
extends the use of the wavelet transform to signals that are
not included in L2(R) but are only locally square-integrable.
The second is a high-level characterization of the performance
of the scalar MMSE estimator of an SαS random variable
corrupted by Gaussian noise as a function of the dispersion
parameter and the noise variance. Similar studies for finite-
variance random variables have been conducted in [41]. Here,
the fact that the variance of the signal is unbounded requires
a more technical treatment.

The paper is organized as follows: In Section II, we present
the notation and review the properties of self-similar SαS
processes. Our signal-estimation problem is then formulated
in Section III. In Section IV, we address the issue of the
calculation of the average energy of a signal from its wavelet
coefficients. In Section V, we specify the MMSE estimator
of a scalar SαS random variable corrupted by AWGN and
characterize its performance in terms of the dispersions of the
signal and noise. The main result of the paper is presented in
Section VI. In Section VII, using the calculus of variations,
we propose an algorithm to find the optimal Meyer wavelet.
The numerical results and the comparison between different
Meyer and Daubechies wavelets are presented in Section VIII.

II. NOTATIONS AND PRELIMINARIES

A. Notations

Throughout the paper we use R, Z, N for the set of real,
integer, and positive integer numbers, respectively. The Fourier
transform of a function f is denoted by f̂ . Also, ‖ f ‖α
represents the α-(pseudo)norm of f for any positive value α.
〈 f, ψ〉 = ∫

f (t)ψ(t)dt is the standard inner product between
the functions f and ψ; when f is only locally integrable, ψ
is assumed to have sufficient decay for it to be well-defined.

To denote the action of an operator L acting on a function f ,
we use the forms of L f or L{ f }(x) depending on if we want
to mention the whole function or its value at a specific point.
P(A) and E[X] stand for the probability of the event A and
the expected value of the random variable X .

B. Self-Similar SαS Processes

We now start with some preliminaries on self-similar SαS
processes that are necessary for understanding the paper.
We use the framework introduced in [2], [42], and [43] due to
its convenience for the treatment of the wavelet coefficients
of stochastic processes. However, we also make links to
conventional stochastic calculus, which is more convenient for
describing the behavior of the process in the time domain [8].

We start by the notion of white noise. Suppose that w is
an SαS white noise with the Lévy exponent −|aω|α for a
given a > 0 [2, Chapter 4]. The quantity aα is called the
dispersion parameter. (It plays a role similar to the variance
of the Gaussian case.) If we observe this noise through a

window θ , the resultant random variable W = 〈w, θ〉 has the
characteristic function

p̂W (ω) = E
[
e−jωW ] = exp

(−∣∣a‖θ‖αω
∣
∣α) , (1)

which is the characteristic function of the SαS random variable
W with dispersion parameter aα‖θ‖αα .

A process s is a self-similar SαS process of order γ ≥ 0 if

Dγ s = w, (2)

where Dγ is the γ th order derivative operator that is defined
as [2, Chapter 7.5]

Dγ { f }(x) = 1

2π

∫

R

(jω)γ f̂ (ω)ejωxdω. (3)

For a test function θ , the random variable 〈s, θ〉 can be
identified with

〈s, θ〉 = 〈D−γ w, θ〉 = 〈w,D−γ ∗θ〉 (4)

in which D−γ ∗ is the Lα-stable adjoint of the inverse operator
of Dγ that is defined by (see [2, Chapter 7.5])

D−γ ∗{θ}(x) = 1

2π

∫

R

θ̂ (ω)−∑�γ+ 1
α 	−1

k=0
θ̂ (k)(0)ωk

k!
(jω)γ

ejωxdω

(5)

when γ > 1 − 1
α and either γ ∈ N or γ − �γ 	 > 1

α − 1.
Equivalently, in the space domain, we have that

D−γ ∗{θ}(x) =
∫

R

K (x, t)θ(t)dt, (6)

where the kernel of the inverse operator is

K (x, t) = 1

�(γ )
(t − x)γ−1

+ −
�γ+ 1

α 	−1∑

k=0

tk

k!
(−x)γ−1−k

+
�(γ − k)

(7)

in which �(·) is Euler’s Gamma function where (x)+ =
max{0, x}. Consequently, according to (1) and (4), 〈s, θ〉 is
an SαS random variable with the characteristic function

p̂〈s,θ〉(ω) = exp
(−∣∣a‖D−γ ∗θ‖αω

∣
∣α) . (8)

Despite the unifying aspect of these formulas in terms of
α, the behavior of the sample paths of the process drastically
change when we go from the finite-variance case (α = 2) to
the sparse case (α < 2) [18]. For α = 2, which is the Gaussian
case, the sample paths are almost-surely continuous for any
γ > 1

2 . By contrast, for α < 2, the sample paths are almost-
surely continuous only for γ > 1; otherwise, when γ < 1,
the sample paths are unbounded on any interval with positive
length [8, Chapter 10]. For the case γ = 1, which corresponds
to Lévy processes, the sample paths are right-semicontinuous
with left limit [44, Chapter 2]. On the asymptotic behavior
of the sample paths, according to [44, Chapter 9] and [45,
Theorem 1.3], we know that, if γ ≥ 1, then there exists a
constant Cη ∈ R for which

|s(x)| ≤ Cη (1+ |x |)η (9)

for any η > γ − 1+ 1
α .

We mainly need two properties to describe the effect of the
operator D−γ ∗. The first one is that the restriction of D−γ ∗
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to the subspace of test functions with at least �γ + 1
α 	 − 1

vanishing moments is a shift- and scale-invariant operator
(see (5)). More precisely, when θ is in this subspace, we have
that

D−γ ∗{θ(c · −b)}(x) = c−γD−γ ∗{θ(·)}(cx − b) (10)

for any b, c ∈ R. If the test functions do not have enough van-
ishing moments, then D−γ ∗ loses its shift-invariance. In this
situation, Lemma 1 applies.

Lemma 1: Suppose γ > max{0, 1− 1
α } and θ is a function

for which there exists a constant A and n > 1 such that
|θ(x)| < A(1+ |x |)−n. Also, assume that θ(x)(1+ |x |)γ−1 ∈
L1(R) and

∫
R
θ(x)dx �= 0. Under these assumptions, we have

that

lim
j→±∞‖D

−γ ∗θ(· − j)‖α = ∞. (11)

The proof is given in Appendix A.
Lemma 1 means that the dispersion of 〈s, θ(· − j)〉 tends

to infinity by letting j tend to infinity (see (8)). This fact
results in significant simplifications in the derivation of our
main result in Section VI.

III. PROBLEM FORMULATION

Assume now that s is the self-similar SαS process defined
by (2). Also, assume that z is an AWGN independent from s
with variance σ 2. Then, the continuous-time stochastic process

s̃ = s + z (12)

is the noisy version of s.
We consider the following denoising problem: Given a real-

ization of the process s̃, we want to estimate the corresponding
realization of the process s. We denote the estimated version
of s by ŝ. Notice that ŝ is also a stochastic process which
depends on s, z, and the method of estimation.

To quantify the performance of the estimation method, we
use the mean of the averaged estimation error

MAEE(s, ŝ) = lim
T→∞Es,ŝ

[
1

2T

∫ T

−T

(
s(x)− ŝ(x)

)2dx

]

. (13)

Now, assume that ϕ and ψ are the father and mother
wavelets of an orthonormal wavelet family, respectively. Then,
for any i0 ∈ Z,

{
ϕi0 j

}
j∈Z ∪

{{
ψi j

}
j∈Z

}∞
i=i0

(14)

is an orthonormal basis for L2(R) where

ϕi0 j (x) = 2
i0
2 ϕ(2i0 x − j) (15)

and

ψi j (x) = 2
i
2ψ(2i x − j). (16)

Here, i0 is the coarsest scale that we take into account.
Under the conditions on s and on the wavelet basis functions
discussed in Section IV, the equality

s(x) =
∑

j∈Z
�i0 jϕi0 j (x)+

∑

i≥i0

∑

j∈Z
i jψi j (x) (17)

holds almost everywhere for almost every realization of s
when

�i0 j = 〈s, ϕi0 j 〉, (18)

i j = 〈s, ψi j 〉. (19)

Now, the general wavelet-domain denoising method is that
based on the wavelet coefficients of s̃, i.e.,

�̃i0 j = 〈s̃, ϕi0 j 〉, (20)

̃i j = 〈s̃, ψi j 〉, (21)

we want to estimate the wavelet coefficients of s, i.e., �i0 j

and i j . We denote the corresponding estimated coefficients
by �̂i0 j and ̂i j , respectively. Then, our estimation of the
process s would be

ŝ(x) =
∑

j∈Z
�̂i0 jϕi0 j (x)+

∑

i≥i0

∑

j∈Z
̂i jψi j (x). (22)

To optimally calculate �̂i0 j and ̂i j , we would need to
take into account all statistical dependencies among wavelet
coefficients. But this is not computationally tractable except
when the process is Gaussian. Therefore, most of the denoising
algorithms calculate �̂i0 j and ̂i j pointwise, based only on the
corresponding wavelet coefficient �̃i0 j and ̃i j of s̃. In other
words, the dependencies to the other wavelet coefficients are
neglected. Hence, these methods are called coefficient-wise
denoising.

Our goal in this paper is to calculate MAEE(s, ŝ) for a
given wavelet basis using a coefficient-wise denoiser and to
characterize the optimal solution. Since our criterion is in fact
a function of ϕ, ψ , and i0, we write it as MAEEi0 (ϕ,ψ).

First, Theorem 1 tells us that the optimal coefficient-
wise denoiser

(
the denoiser that minimizes MAEEi0(ϕ,ψ)

)

is the coefficient-wise MMSE estimator. Then, we establish in
Theorem 2 some properties for the MMSE function of denois-
ing an SαS random variable. Based on these two theorems, we
transform (13) into a concise formula. This formula allows us
to easily compare different wavelets and to optimize a given
design. We will also show in Section VI that for this denoiser
the series on the right-hand side of (22) are convergent. This
ensures that ŝ is well-defined.

The studied estimator is globally suboptimal because the
denoising is performed coefficient-wise. This suggests that the
denoising result obtained with “more independent” wavelet
coefficients should be closer to the global minimizer of (13).
Therefore, the derived formula can also measure the ability of
a given wavelet basis to decouple self-similar SαS stochastic
processes.

IV. CALCULATING AVERAGE ENERGY OF A FUNCTION

USING ITS WAVELET COEFFICIENTS

This section is devoted to the calculation of the average
energy of a signal based on its wavelet coefficients. This is not
a trivial task because the functions under consideration are not
included in L2(R). Such a characterization is also required to
lend meaning to (17).
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Consider the wavelet family defined in (14)-(15). For a
function f ∈ L2(R), we have that

f (x) =
∑

j∈Z
〈 f, ϕi0 j 〉ϕi0 j (x)+

∑

i≥i0

∑

j∈Z
〈 f, ψi j 〉ψi j (x) (23)

and

‖ f ‖22 =
∑

j∈Z
〈 f, ϕi0 j 〉2 +

∑

i≥i0

∑

j∈Z
〈 f, ψi j 〉2. (24)

This means that we can calculate the energy of a square-
integrable function from its wavelet coefficients. In Theorem 1,
we show that the concept generalizes to the determination
of the average energy, even for signals that are not square-
integrable, provided that the wavelets have a sufficient decay.
Notice that the family of signals that have a finite average
energy is much broader than L2(R) since L2-functions have
an average energy of zero.

Theorem 1: Suppose that the wavelets are such that

|ϕ(x)|, |ψ(x)| ≤ η(x) = A

(1+ |x |)n+1+ε (25)

for some A, n, ε > 0. Then, for any function f for which there
exists B > 0 that satisfies

| f (x)| ≤ g(x) = B(1+ |x |)n, (26)

we have that

lim
T→∞

1

2T

∫ T

−T
f (x)2dx

= lim
N→∞

1

2N

⎛

⎝
∑

| j |≤2i0 N

〈 f, ϕi0 j 〉2 +
∑

i≥i0

∑

| j |≤2i N

〈 f, ψi j 〉2
⎞

⎠ .

(27)
The proof is given in Appendix B.
This theorem helps us evaluate (13) for a wavelet-domain

denoising method. We can also establish the complementary
convergence result whose proof is given in Appendix C.

Proposition 1: Under the assumptions of Theorem 1,

f (x) =
∑

j∈Z
〈 f, ϕi0 j 〉ϕi0 j (x)+

∑

i≥i0

∑

j∈Z
〈 f, ψi j 〉ψi j (x) (28)

holds almost everywhere.

V. MMSE DENOISING OF SαS RANDOM VARIABLES

In this section, we study the MMSE performance of a
denoiser that is applied to a scalar SαS random variable
contaminated by Gaussian noise. Suppose that

Y = X + Z , (29)

where X is an SαS random variable with dispersion parameter
aα and Z is a Gaussian random variable, independent from X ,
with mean 0 and variance σ 2.

According to Stein’s formula, the MMSE estimator of X
given Y is [46]

X̂ = E[X |Y ] = Y + σ 2 p′Y (Y )
pY (Y )

(30)

in which pY and p′Y are the probability density function of Y
and its derivative, respectively. Notice that

pY = pX ∗ pZ . (31)

where pX and pZ are the probability density functions of X
and Z , respectively, and ∗ denotes the convolution operator.
Stein’s theory also provides the MMSE that is achieved by the
optimal denoiser as [27], [47]

E
[
(X − X̂)2

] = σ 2 − σ 4
∫ (

p′Y (y)
)2

pY (y)
dy. (32)

We call this function MMSE(a, σ ), where aα is the dispersion
of the signal and σ 2 is the variance of the noise.

In Theorem 2, we prove some properties for MMSE(a, σ )
that we use later in the derivation of our main result. A similar
function is studied in [41] and [48], mostly in the scenario
where X is a finite-variance random variable. The challenge
here is that SαS random variables have infinite variance
for α < 2.

Theorem 2: Let Y = X + Z where X is an SαS random
variable with dispersion parameter aα and Z is a Gaussian
random variable, independent from X, with mean 0 and
variance σ 2. Also, recall that MMSE(a, σ ) is the minimum
mean square error of estimating X from Y . Then, the following
properties hold for MMSE(a, σ ) as a function of its first
argument a:

1) Increasing over [0,+∞).
2) Towards infinity, we have

lim
a→∞MMSE(a, σ ) = σ 2. (33)

3) Around zero, we have

lim
a→0

MMSE(a, σ )

aα−ε
= 0 (34)

for any ε > 0.
For the proof, refer to Appendix D.
Also, notice that we have

MMSE(a, σ ) ≤ σ 2 (35)

for any a and σ since the identity estimator, i.e. X̂ = Y , has
the MSE of σ 2. This can also be seen from (32).

Additionally, by plotting the graph of MMSE(a, σ ) around
a = 0 in the computer, we propose Conjecture 1. This
conjecture is not required for our analysis but helps us with a
nice intuitive interpretation of the final result.

Conjecture 1: Around zero, we have

lim
a→0

MMSE(a, σ )

aα+ε
=∞ (36)

for any ε > 0.

VI. MAEE OF COMPONENT-WISE WAVELET-BASED

DENOISING

We now present our main result on the solution of the
problem formulated in Section III. We concentrate on the case
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where γ ≥ 1 and the mother wavelet ψ has at least �γ+ 1
α 	−1

vanishing moments. Also, we assume that

|ϕ(x)|, |ψ(x)| ≤ A

(1+ |x |)η (37)

for an η > γ + 1
α and A ∈ R. These assumptions, along

with (9) and Proposition 1, yield

s(x) =
∑

j∈Z
〈s, ϕi0 j 〉ϕi0 j (x)+

∑

i≥i0

∑

j∈Z
〈s, ψi j 〉ψi j (x) (38)

almost surely.
Also, we can straightforwardly characterize the wavelet

coefficients of i j = 〈s, ψi j 〉. Assume that

φ = D−γ ∗ψ. (39)

As discussed in Section II-B and as a result of the vanishing
moments of ψ , we can write

φi j (x) = D−γ ∗{ψi j }(x) = 2i( 1
2−γ )φ(2i x − j). (40)

Therefore, according to (4) and (8), the characteristic function
of i j (see also (19)) is

p̂i j (ω) = exp
(−∣∣a‖φi j ‖αω

∣
∣α) . (41)

A crucial point is that ‖φi j ‖α only depends on the scale
index i . It is given by

‖φi j ‖α = 2i( 1
2− 1

α−γ )‖φ‖α. (42)

Similarly, we find that

p̂�i0 j (ω) = exp
(−∣∣a‖D−γ ∗ϕi0 j‖αω

∣
∣α) . (43)

But, since ϕ is orthogonal to ψ , it does not have any vanishing
moments. Thus, according to Section II-B, D−γ ∗ϕi0 j with
j varying are not shifted versions of each other. However,
Lemma 1 is all what we need about them.

The combination of (12) with (20)-(19) implies that

�̃i0 j = �i0 j + Z ′i0 j , (44)

̃i j = i j + Zi j , (45)

where

Z ′i0 j = 〈z, ϕi0 j 〉, (46)

Zi j = 〈z, ψi j 〉. (47)

Thanks to the orthonormality of the wavelet family, the random
variables Z ′i0 j and Zi j are iid Gaussian with mean 0 and
variance σ 2. This allows us to determine the coefficient-wise
MMSE estimation of �i0 j and i j by the direct application
of the scalar estimators discussed in Section V.

In Section III, MAEEi0 (ϕ,ψ) is the mean average error
energy of the optimal coefficient-wise denoising. Thanks to

Theorem 1, it is reformulated in the wavelet domain as

MAEEi0 (ϕ,ψ)

= lim
N→∞

1

2N
E

[ ∑

| j |≤2i0 N

(
�i0 j − �̂i0 j

)2

+
∑

i≥i0

∑

| j |≤2i N

(
i j − ̂i j

)2
]

= lim
N→∞

1

2N

( ∑

| j |≤2i0 N

E
[(
�i0 j − �̂i0 j

)2]

+
∑

i≥i0

∑

| j |≤2i N

E
[(
i j − ̂i j

)2]
)

. (48)

Based on this formula, we infer that the optimal coefficient-
wise denoiser (the one that gives us the minimum MAEE)
is the one that provides the MMSE for each coefficient. It
is thus the coefficient-wise MMSE denoiser. In this case and
according to Section V and (41)-(43), we have that

E
[
(�i0 j − �̂i0 j )

2] = MMSE
(
a‖D−γ ∗ϕi0 j }‖α, σ

)
, (49)

E
[
(i j − ̂i j )

2] = MMSE
(

2i( 1
2− 1

α−γ )a‖φ‖α, σ
)
. (50)

Replacing (49) and (50) in (48), we get

MAEEi0 (ϕ,ψ)

= lim
N→∞

1

2N

( ∑

| j |≤2i0 N

MMSE
(
a‖D−γ ∗ϕi0 j }‖α, σ

)

+
∑

i≥i0

(2i+1 N + 1)MMSE
(

2i( 1
2− 1

α−γ )a‖φ‖α, σ
))

.

(51)

Now, (42) gives us

MAEEi0 (ϕ,ψ)

= lim
N→∞

1

2N

∑

| j |≤2i0 N

MMSE
(
a‖D−γ ∗ϕi0 j }‖α, σ

)

+
∑

i≥i0

2i MMSE
(

2i( 1
2− 1

α−γ )a‖φ‖α, σ
)
. (52)

Also, the existing limit in the right-hand side of (52) can be
calculated by combining Lemma 1 and Part 1 of Theorem 2.
Since ϕi0 j has no vanishing moments, ‖D−γ ∗ϕi0 j‖α tends to
infinity as j goes to infinity. Thus, we conclude that

lim
j→∞MMSE

(
a‖D−γ ∗ϕi0 j‖α, σ

) = σ 2. (53)

This means that there is no asymptotic advantage to denoise
the coefficients corresponding to the scaling functions (the
low-pass basis functions) since this denoising performs no bet-
ter than the identity estimator whose MSE is σ 2. Incorporating
(53) in (52), we finally obtain

MAEEi0 (ϕ,ψ) = 2i0σ 2 +
∑

i≥i0

2i

×MMSE
(

2i( 1
2− 1

α−γ )a‖φ‖α, σ
)
. (54)
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Since γ > 1
2 , there exists ε > 0 for which

(1

2
− 1

α
− γ )(α − ε)+ 1 < 0. (55)

Thus, according to Part 3 of Theorem 2, the summation
in (54) is finite, which is reassuring for our application.
If it was otherwise, any coefficient-wise denoising in any
wavelet domain would result in an unbounded mean average
error energy, suggesting that there would be no advantage in
trying to optimize the wavelet basis. Here are other interesting
consequences of our analysis.

Remark 1: The finiteness of MAEEi0 (ϕ,ψ) implies that the
series in (22) are almost surely convergent when �̂i0 j and ̂i j

are the coefficient-wise MMSE estimations of �i0 j and i j

from �̃i0 j and ̃i j . Thus, almost every realization of ŝ is a
well-defined function that is locally square-integrable. Notice
that the same statement does not hold for s̃ since almost every
realization of z is not a locally L2 function.

Remark 2: If we forget about the time-domain representa-
tion and consider (48) as our original definition of performance
measure as motivated by Theorem 1, then the story can also
be told with γ less than 1. The parameter γ can be seen
as a measure of the spatial coupling of the process instants:
γ = 0 corresponds to white noise with no coupling, and larger
γ leads to more coupling. Then, Conjecture 1 reveals that it
is possible to achieve a finite value for the estimation error
by performing a coefficient-wise wavelet-domain denoising
only if γ ≥ 1

2 . This happens when the signal exhibits a
sufficient amount of coupling. This is an interesting duality
relation between the amount of dependency that exists among
the spatial instants of the original process and the amount of
dependency that we must utilize among its wavelet coefficients
to denoise them.

Moreover, since MMSE(a, σ ) ≤ σ 2 for any a, a decrease
in i0 results in a decrease of (54). This means that the use of
more resolution levels in the denoising procedure gives better
results. Thus, by letting i0 tend to −∞, we get the quantity

MAEE(ψ) =
∑

i∈Z
2i MMSE

(
2i( 1

2− 1
α−γ )a‖φ‖α, σ

)
(56)

which is the least achievable MAEE by performing a
coefficient-wise wavelet-domain denoising for recovering SαS
self-similar processes embedded in AWGN.

An interesting point about (54) and (56) is that, although
the function MMSE(·, ·) is not known analytically, a smaller
‖φ‖α results in a smaller MAEE(ψ). This is because we know
that MMSE(·, ·) is an increasing function of its first argument
(Part 2 of Theorem 2). This means that, to compare the
denoising performance of two different families of wavelet
for γ -order SαS processes, it is enough to compare the
α-norm of the γ -order integration of their mother wavelets;
i.e.,

∥
∥D−γ ∗ψ

∥
∥
α

. This observation tremendously simplifies the
design of the optimal wavelet. Also, it implies that the optimal
wavelet depends neither on the dispersion aα of the signal nor
on the variance σ 2 of the noise. Notice that, although it is
obvious that the multiplication of a and σ by a constant does
not affect the optimal wavelet, the independence of the optimal
wavelet from a

σ is not obvious a priori.

VII. OPTIMAL MEYER WAVELETS FOR DENOISING

SELF-SIMILAR SαS PROCESSES

Based on the result of Section VI and with the help of the
calculus of variations, we now propose an algorithm to design
the optimal wavelet for a given γ and α within the so-called
Meyer family of bandlimited wavelets [40].

According to [40], [49], for a given function v : [0, 1] → R

such that

v(ρ) + v(1− ρ) = 1, (57)

the profile

W{v}(ω) =

⎧
⎪⎨

⎪⎩

sin
(
π
2 v(

3
2π |ω| − 1)

)
, 2π

3 < |ω| ≤ 4π
3

cos
(
π
2 v(

3
4π |ω| − 1)

)
, 4π

3 < |ω| ≤ 8π
3

0, otherwise

(58)

is the Fourier transform of the mother wavelet of an orthonor-
mal wavelet basis. These wavelets are called Meyer wavelets.

We just saw that in order to rank the denoising perfor-
mance of different wavelet bases, it is enough to compare
the α-(pseudo)norm of the γ -order integration of their mother
wavelets. Hence, for a Meyer wavelet, the criterion

Qγ
α (v) =

∫

R

∣
∣
∣
∣

1

2π

∫

R

W{v}(ω)
(jω)γ

ejωx dω

∣
∣
∣
∣

α

dx

= 1

πα

∫

R

∣
∣
∣
∣

∫ 8π
3

2π
3

W{v}(ω)
ωγ

cos
(
ωx − π

2
γ
)
dω

∣
∣
∣
∣

α

dx

(59)

is a predictor of its denoising performance. Next, we apply
a projected-gradient-descent algorithm with adaptive step size
to find the function v that minimizes Qγ

α (v). An adaptive step
size is specially important for α ≤ 1 for which the functional
does not have a Lipschitz gradient. The pseudo-code of our
optimization method is given in Algorithm 1. In the algorithm,
∇Qγ

α is the infinite-dimensional gradient of the functional Qγ
α

in the Hilbert space of L2([0, 1]). Also, P{ṽ} is the projector
that maps ṽ to the nearest function that satisfies (57).

According to Appendix E, ∇Qγ
α is calculated as

∇Qγ
α {v}(ρ) =

1

πα
π2α

3

( 3

2π

)γ cos
(
π
2 v(ρ)

)

(ρ + 1)γ

×
∫

R

λ

(∫ 8π
3

2π
3

W{v}(ω)
ωγ

cos
(
ωx − π

2
γ
)

dω

)

× cos
(2π

3
(ρ + 1)x − π

2
γ
)

dx

− 2

πα
π2α

3

( 3

4π

)γ sin
(
π
2 v(ρ)

)

(ρ + 1)γ

×
∫

R

λ

(∫ 8π
3

2π
3

W{v}(ω)
ωγ

cos
(
ωx − π

2
γ
)

dω

)

× cos
(4π

3
(ρ + 1)x − π

2
γ
)

dx, (60)

where λ(x) = sgn(x)|x |α−1. Also, in Appendix F, we prove
that

P{ṽ}(ρ) = ṽ(ρ)− ṽ(1− ρ)+ 1

2
. (61)
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Algorithm 1 Optimal Meyer Wavelet
1: initialize: v ∈ L2([0, 1])
2: initialize: η > 0
3: initialize: κ+ ≥ 1 and κ− ≤ 1
4: Q← Qγ

α (v)
5: repeat
6: vold ← v
7: Qold ← Q
8: ṽ ← v − η ∇Qγ

α {v}
9: v ← P{ṽ}

10: Q← Qγ
α (v)

11: if Q ≤ Qold then
12: η← κ+ · η
13: else
14: v ← vold

15: Q ← Qold

16: η← κ− · η
17: end if
18: until v converges
19: return v

Thus, we have all the ingredients to implement
Algorithm 1.

It is worth mentioning that for α = 2 as long as γ > 1
2 ,

which in fact includes all fBms, the minimizer of Qγ
2 can

be derived analytically. It is indeed the Shannon wavelet,
irrespective of the value of γ . This result is in accordance
with the well-known result about the optimality of Shannon
wavelets for the minimum approximation error of processes
with non-increasing spectrum [50]. The formal statement of
this result is given in Proposition 2.

Proposition 2: If α = 2 and γ > 1
2 , then

v(ρ) = 1[ 1
2 ,1

](ρ), (62)

which corresponds to the wavelet with the Fourier profile

W{v}(ω) = 1[−2π,−π](ω)+ 1[π,2π](ω), (63)

minimizes Qγ
2 (v).

The proof is provided in Appendix G.

VIII. NUMERICAL OPTIMIZATION OF MEYER WAVELETS

AND COMPARISON OF DIFFERENT WAVELET FAMILIES

In this section, we give the wavelet for some values of γ
and α optimized according to the derivation of Section VII.
Additionally, we compare the performance of Meyer wavelets
which are compactly supported in the Fourier domain with the
Daubechies wavelets [51] that are compactly supported in the
time domain.

To implement Algorithm 1, we take the samples of v and
W{v} uniformly in the Fourier and time domain, respectively.
Since these wavelets are not compactly supported, we have to
truncate them at some point in the time domain.

We give in Figure 1 the outcome of the algorithm for
γ = 1 and α = 1.2, 1.8, and 2. We show in Figure 2
the plots for the optimal wavelet when α = 1.2 and γ =
1, 2, 4. An interesting phenomenon that is observed in these

Fig. 1. Optimal v(ρ) and corresponding wavelet profile W{v}(ω) for γ = 1
and α = 1.2, 1.8, and 2.

Fig. 2. Optimal v(ρ) and corresponding wavelet profile W{v}(ω) for α = 1.2
and γ = 1, 2, and 4.

plots is that, by letting either α or γ increase, the wavelet
approaches the Shannon wavelet ((62) and (63)). Regarding
α, remember thet Proposition 2 states that the optimal wavelet
for α = 2 is exactly the Shannon wavelet. Regarding γ , we
qualitatively shrink the high frequencies as γ increases. Thus,
in order to have a smaller Qγ

α (v), the frequency content tends
toward higher frequencies and v will have less weight on
[0, 1

2 ]. Therefore, the optimal wavelet approaches the Shannon
wavelet which is vanishing on this interval (see (62)).

Conversely, the optimal wavelet tends to the Held wavelet
(v(ρ) = ρ) when α decreases [52]. Thus, we can roughly say
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Fig. 3. The α-norm of the first-order integral of different mother wavelets
versus α.

that, for very sparse cases (small α), it is better to use the
Held wavelet; for less sparse cases (α close to 2), it is better
to use the Shannon wavelet.

In the next step, we compare the MAEE performance of
the optimal Meyer wavelets and Daubechies wavelets. Meyer
wavelets lend themselves well to an FFT-based implementation
due to their compact support in the Fourier domain (band-
limitedness). Daubechies wavelets, on the other hand, are well-
known for their minimal support in the time domain, which is
valued in many applications.

According to the discussions in Section VI, comparing the
MAEE obtained by different wavelets for denoising γ th-order
SαS self-similar processes is equivalent to comparing the
α-(pseudo)norm of the γ th-order integration of their mother
wavelet. We plotted this quantity versus α in Figure 3 for the
case of Lévy processes (γ = 1).

We observe that for very sparse signals (small α) it is better
to use compactly supported wavelets (Daubechies wavelet).
Moreover, we see that a smaller α favors a smaller wavelet
support. Indeed, the Daubechies wavelet of order 1 (the Haar
wavelet [53]) has the shortest support in the time domain and
outperforms all the others for α � 1.3. However, in less sparse
cases (α close to 2), a compact support in the Fourier domain
(band-limitedness) becomes more favorable. For special case
α = 2, the Shannon wavelet, which has the shortest support
in the Fourier domain, outperforms the others, even if its
superiority over the other Meyer wavelets is marginal.

IX. SUMMARY AND CONCLUSION

In this paper, we studied the performance of the wavelet-
domain denoising of self-similar symetric-α-stable (SαS)
processes corrupted by additive white Gaussian noise.
We focused on the most classical denoising which proceeds
coefficient-wise. We derived a simple formula for the mean

average energy of estimation error (MAEE) for a given γ , α,
and wavelet family, where γ is the order of the self-similar
process under consideration. We showed that MAEE is an
increasing function of the α-(pseudo)norm of the γ th-order
integral of the mother wavelet ψ , i.e. ‖D−γ ∗ψ‖α . This is an
essential property that allows us to compare different wavelets
based on this simple indicator of localization. The fact that
the wavelet coefficients are treated independently is the only
source of suboptimality of these denoisers. Thus, more correct
is this assumption, MAEE is smaller. Therefore, the quantity
‖D−γ ∗ψ‖α can also be used to measure the decoupling perfor-
mance of the wavelet. Moreover, the simplicity of the derived
performance criterion allowed us to propose an optimization
algorithm to find the optimal Meyer wavelet for a given γ and
α. We could then compare the relative denoising performance
of Meyer and Daubechies wavelets. For highly sparse signals
(small α) we deduced that, it is better to use wavelets of
compact support in the time domain; while for less sparse
signals (α close to 2), it is better to use wavelets of compact
support in the Fourier domain (Meyer wavelets).

To obtain these results, we proved two main theorems that
are interesting on their own right. The first one enables us to
calculate the average energy of a signal by using its wavelet
coefficients (Theorem 1). The second one is about the min-
imum mean-square error (MMSE) function of estimating an
SαS random variable given its summation with an independent
Gaussian random variable (Theorem 2).

APPENDIX A
PROOF OF LEMMA 1

First, notice that

D−γ ∗{θ(−·)}(x) = D−γ ∗{θ(·)}(−x). (64)

Thus, it is enough to prove (11) when letting j tend to +∞.
According to (6) and (7), for x > 0, we have that

D−γ ∗{θ(· − j)}(x) = 1

�(γ )

(
(−·)γ−1

+ ∗ θ(·))(x − j) (65)

which implies that

‖D−γ ∗{θ(· − j)}‖α
≥ 1

�(γ )

∥
∥
∥
(
(−·)γ−1

+ ∗ θ(·)) · 1[− j,0]
∥
∥
∥
α
, (66)

where 1[− j,0] is the indicator function of [− j, 0]. Now, since
α(γ−1) > −1, it is sufficient to prove that

(
(−·)γ−1

+ ∗θ(·)
)
(x)

grows (decays) with the same rate as (−x)γ−1
+ when x tends

to −∞; in other words

lim
x→−∞

(
(−·)γ−1

+ ∗ θ(·))(x)
(−x)γ−1

+
= C, (67)

where C is a nonzero real number. We first prove this statement
when θ is a nonnegative function such that θ(x) ≥ 0 for all
x ∈ R, and then we generalize it to any θ .
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Assuming that θ is a nonnegative function, x < −1, and
1
n < r < 1, we write

(
(−·)γ−1

+ ∗ θ(·))(x)
(−x)γ−1

+
=

∫
R
(t − x)γ−1

+ θ(t)dt

(−x)γ−1

=
∫

R

(
1− t

x

)γ−1
+ θ(t)dt

=
∫

|t |≤|x |r
(
1− t

x

)γ−1
+ θ(t)dt

+
∫

|t |>|x |r
(
1− t

x

)γ−1
+ θ(t)dt . (68)

If γ ≥ 1, the first term of this summation is bounded by

(
1− 1

|x |r
)γ−1

∫

|t |≤|x |r
θ(t)dt

≤
∫

|t |≤|x |r
(
1− t

x

)γ−1
+ θ(t)dt

≤ (1+ 1

|x |r )
γ−1

∫

|t |≤|x |r
θ(t)dt . (69)

Consequently, as x tends to −∞, we obtain that

lim
x→−∞

∫

|t |≤|x |r
(
1− t

x

)γ−1
+ θ(t)dt =

∫

R

θ(t)dt . (70)

As for the second term in the right-hand side of (68), we write

∫ −|x |r

−∞
(
1− t

x

)γ−1
+ θ(t)dt ≤ (

1− 1

|x |r
)γ−1

∫ −|x |r

−∞
θ(t)dt

(71)

and, since |x |r < −x , we have that
∫ ∞

|x |r
(
1− t

x

)γ−1
+ θ(t)dt ≤

∫ ∞

|x |r
(
1+ t

)γ−1
+ θ(t)dt . (72)

Since both integrals on the right-hand side of (71) and (72)
are finite by assumption, by letting x tend to −∞ we obtain
that

lim
x→−∞

∫

|t |>|x |r
(
1− t

x

)γ−1
+ θ(t)dt = 0. (73)

Up to now, we have proved that,

lim
x→−∞

(
(−·)γ−1

+ ∗ θ(·))(x)
(−x)γ−1

+
=

∫

R

θ(t)dt, (74)

provided that θ is a nonnegative function. For a general
function θ , let θ+(x) = (θ(x))+ and θ−(x) = (−θ(x))+.
Thus, both of θ+ and θ− are nonnegative functions whilst
θ = θ+ − θ−. Incorporating this fact in (74) and using the
bilinearity of the convolution operator, we can generalize (74)
to any θ ∈ L1(R). Therefore, since

∫
R
θ(x)dx �= 0, the

argument (67) is proved for γ > 1.
For γ < 1, the argument is the same except that the upper-

and lower-bounds need to be swapped in (69). Thus, (70) still

holds. In (71), the inequality converts to
∫ −|x |r

−∞
(
1− t

x

)γ−1
+ θ(t)dt

≤ sup
[x,−|x |r ]

|θ(t)| ×
∫ −|x |r

x

(
1− t

x

)γ−1
+ dt

≤ A

(1+ |x |r)n ×
−x

γ

(
1− 1

|x |r
)γ
. (75)

Since nr > 1, the bound tends to zero as x tends to −∞. The
corresponding inequality for (72) with γ < 1 is
∫ ∞

|x |r
(
1− t

x

)γ−1
+ θ(t)dt ≤ (

1+ 1

|x |r
)γ−1

∫ ∞

|x |r
θ(t)dt, (76)

which again tends to zero as x tends to −∞, and which
completes the proof.

APPENDIX B
PROOF OF THEOREM 1

First, notice that the conditions on f , ϕ, and ψ guarantee
that the wavelet coefficients exist and are finite. We prove the
result for i0 = 0. It extends to other i0 similarly. Define two
projections

PT { f }(t) = f (t) · 1[−T ,T ] (77)

in which 1[−T ,T ] is the indicator function of [−T, T ], and

QN { f }(t) =
∑

| j |≤N

〈 f, ϕ0 j 〉ϕ0 j (t)+
∑

i≥0

∑

| j |≤2i N

〈 f, ψi j 〉ψi j (t)

(78)

for f : R→ R satisfying the conditions of the theorem. Later
in the proof, we show that, for a fixed N , (78) is a converging
series in L2 and thus QN f is well-defined. In fact, PT is the
orthogonal projections onto the space of functions that are
supported on [−T, T ], while QN is the orthogonal projection
onto the space generated by {ϕ0 j }| j |≤N ∪ {{ϕi j }| j |≤2i N }∞i=0.
Hence, we want to prove that

lim
T→∞

1

2T
‖PT f ‖22 = lim

N→∞
1

2N
‖QN f ‖22 . (79)

Since PT and QN are orthogonal projection, they do not
increase the norm. Thus, we have that

‖PT f ‖2 = ‖PT QN f + PT (1− QN ) f ‖2
≤ ‖PT QN f ‖2 + ‖PT (1− QN ) f ‖2
≤ ‖QN f ‖2 + ‖PT (1− QN ) f ‖2. (80)

Similarly, we have that

‖QN f ‖2 ≤ ‖PT f ‖2 + ‖QN (1− PT ) f ‖2. (81)

Therefore, we can write
√

T

N

(‖PT f ‖2√
T
− ‖PT (1− QN ) f ‖2√

T

)

≤ ‖QN f ‖2√
N

≤
√

T

N

(‖PT f ‖2√
T
+ ‖QN (1− PT ) f ‖2√

T

)
. (82)
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Now, assume that δ > 0 and let N+ = (1 + δ)2T and
N− = (1− δ)2T . Using the inequalities in (82), by letting T
tend to infinity we obtain that

(1− δ) lim sup
N→∞

‖QN f ‖2√
N

≤ lim
T→∞

‖PT f ‖2√
T
+ lim sup

T→∞
‖QN− (1− PT ) f ‖2√

T
(83)

and

(1+ δ) lim sup
N→∞

‖QN f ‖2√
N

≥ lim
T→∞

‖PT f ‖2√
T
− lim sup

T→∞
‖PT (1− QN+ ) f ‖2√

T
. (84)

Hence, it is sufficient to prove that, for any δ > 0, we have
that

lim sup
T→∞

‖QN (1− PT ) f ‖22
T

= 0 if N ≤ (1− δ)T (85)

and

lim sup
T→∞

‖PT (1− QN ) f ‖22
T

= 0 if N ≥ (1+ δ)T . (86)

Notice that (85), at first hand, yields that (78) is a converg-
ing series in L2(R) and QN f is well-defiend. The reason is
that

∑

| j |≤N

〈 f, ϕ0 j 〉2 +
∑

i≥0

∑

| j |≤2i N

〈 f, ψi j 〉2

=
∑

| j |≤N

(〈PT f, ϕ0 j 〉 + 〈(1 − PT ) f, ϕ0 j 〉)2

+
∑

i≥0

∑

| j |≤2i N

(〈PT f, ψi j 〉 + 〈(1 − PT ) f, ψi j 〉)2. (87)

Using the inequality (a + b)2 ≤ 2(a2 + b2), we get

∑

| j |≤N

〈 f, ϕ0 j 〉2 +
∑

i≥0

∑

| j |≤2i N

〈 f, ψi j 〉2

≤ 2
( ∑

| j |≤N

〈PT f, ϕ0 j 〉2 +
∑

i≥0

∑

| j |≤2i N

〈PT f, ψi j 〉2
)

+ 2
( ∑

| j |≤N

〈(1− PT ) f, ϕ0 j 〉2

+
∑

i≥0

∑

| j |≤2i N

〈(1 − PT ) f, ψi j 〉2
)

= 2‖QN PT f ‖22 + 2‖QN (1− PT ) f ‖22. (88)

Since |PT f (x)| ≤ PT g(x) and PT g ∈ L2(R), PT f also
belongs to L2(R). This means that the right-hand side of (87)
is finite. Consequently, the left-hand side of (87) is finite, too,
and thus QN f belongs to L2(R).

To prove (85), we write

‖QN (1− PT ) f ‖22
=

∑

| j |≤N

( ∫

|x |>T
f (x)ϕ(x − j)dx

)2

+
∑

i≥0

∑

| j |≤2i N

( ∫

|x |>T
f (x)2

i
2ψ(2i x − j)dx

)2

=
∑

| j |≤N

( ∫

|x+ j |>T
f (x + j)ϕ(x)dx

)2

+
∑

i≥0

∑

| j |≤2i N

2−i
( ∫

| x+ j
2i |>T

f
( x + j

2i

)
ψ(x)dx

)2
. (89)

Using the facts that | f (x)| ≤ g(x), |ϕ(x)|, |ψ(x)| ≤ η(x),
where g and η are even functions and g is increasing on the
positive numbers, along with T−N ≥ δT and (89), we deduce
that

‖QN (1− PT ) f ‖22
≤ 4T

( ∫

x>δT
g(x + T )η(x)dx

)2

+
∑

i≥0

2−i · 4 · 2i T
( ∫

x>2i δT
g(x + T )η(x)dx

)2

≤ 4T
[( ∫

x>δT
g
(
(1+ 1

δ
)x

)
η(x)dx

)2

+
∑

i≥0

( ∫

x>2i δT
g
(
(1+ 1

δ
)x

)
η(x)dx

)2]
. (90)

However, we know that there exists c ∈ R that satisfies
g
(
(1+ 1

δ )x
)
η(x) < c

x1+ε . Thus, we have that

‖QN (1− PT ) f ‖22
≤ 4T

[( ∫ ∞

δT

c

x1+ε dx
)2 +

∑

i≥0

( ∫ ∞

2i δT

c

x1+ε dx
)2]

= 4T

(
c2

δ2T 2ε +
∑

i≥0

c2

22iδ2T 2ε

)

= c′T 1−2ε (91)

with c′ independent of T , which completes the proof of (85).
To prove (86), we write

‖PT (1− QN ) f ‖22 =
∫ T

−T
|(1− QN ){ f }(x)|2dx

≤ 2T
[

sup
|x |≤T
|(1− QN ){ f }(x)|

]2
. (92)

We have that

(1− QN ){ f }(x)
=

∑

| j |>N

( ∫

R

f (u)ϕ(u − j)du
)
ϕ(x − j)

+
∑

i≥0

∑

| j |>2i N

( ∫

R

f (u)2
i
2ψ(2i u − j)du

)
2

i
2ψ(2i x − j).

(93)
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Using | f (x)| ≤ g(x) and |ϕ(x)|, |ψ(x)| ≤ η(x), and changing
the variables of integrations, we get

|(1− QN ){ f }(x)|
≤

∑

| j |>N

( ∫

R

g(u + j)η(u)du
)
η(x − j)

+
∑

i≥0

∑

| j |>2i N

( ∫

R

g
(u + j

2i

)
η(u)du

)
η(2i x − j). (94)

For |x | < T , exploiting the fact that η is an even function and
decreasing on positive numbers, along with N ≥ (1+δ)T , we
write

|(1− QN ){ f }(x)|
≤

∑

| j |>N

( ∫

R

g(u + j)η(u)du
)
η(δ′ j)

+
∑

i≥0

∑

| j |>2i N

( ∫

R

g
(u + j

2i

)
η(u)du

)
η(2iδ′ j), (95)

where δ′ = δ
1+δ . We know that there exists C ∈ R, indepen-

dent of x and y, that satisfies

(x + y)n ≤ C(|x |n + |y|n). (96)

The same C satisfies

g(x + y) ≤ C(g(x)+ g(y)). (97)

Thus, we write

|(1− QN ){ f }(x)|
≤ C

∑

| j |>N

( ∫

R

(g(u)+ g( j))η(u)du
)
η(δ′ j)

+C
∑

i≥0

∑

| j |>2i N

( ∫

R

(
g
( u

2i

)+ g
( j

2i

))
η(u)du

)
η(2iδ′ j).

(98)

By expanding the summations, we obtain

|(1− QN ){ f }(x)|
≤ C

( ∫

R

g(u)η(u)du
) ∑

| j |>N

η(δ′ j)

+C
( ∫

R

η(u)du
) ∑

| j |>N

g( j)η(δ′ j)

+C
∑

i≥0

[( ∫

R

g
( u

2i

)
η(u)du

) ∑

| j |>N

η(2iδ′ j)

+
(∫

R

η(u)du
) ∑

| j |>N

g
( j

2i

)
η(2iδ′ j)

]

. (99)

However, we have that
∫

R

g
( u

2i

)
η(u)du ≤ BC

( ∫

R

η(u)du + 1

2in

∫

R

unη(u)du
)
,

(100)

where B and C are as in (26) and (96), respectively. Likewise,
we have that
∫

|u|>N
g
( u

2i

)
η(2iδ′u)du

≤ BC
( ∫

|u|>N
η(2iδ′u)du + 1

2in

∫

|u|>N
unη(2iδ′u)du

)

≤ BC

2iδ′
( ∫

|u|>2i δ′N
η(u)du + 1

(22iδ′)n

∫

|u|>2i δ′N
unη(u)du

)

≤ BC

2iδ′
( ċ

(2iδ′N)n+ε
+ 1

(22iδ′)n
c̈

2iδ′Nε

)
. (101)

Therefore, using the inequalities in (101) and bounding the
summations in (99) by integrals, for a large enough N , we get

|(1− QN ){ f }(x)|
≤ c1

Nn+ε +
c2

Nε
+
∞∑

i=0

( c3

2(n+2)i
· 1

Nn+ε +
c4

2(2n+1)i Nε

)

≤ c′′

T ε
, (102)

in which c1 to c4 and c′′ are constants independent of N and T .
This completes the proof of (86) and hence the proof of the
theorem.

APPENDIX C
PROOF OF PROPOSITION 1

Repeating the proof of (86), we show that

lim sup
N→∞

‖PT (1− QN ) f ‖22 = 0 (103)

for any fixed T > 0. This means that QN f converges to f on
[−T, T ] almost surely for any T , which completes the proof.

APPENDIX D
PROOF OF THEOREM 2

1) Assume that a1 ≥ a2 ≥ 0. We are going to show that
M(a1, b) ≥ M(a2, b). Let X1 and X2 be two SαS random
variables with dispersion parameters aα1 and aα2 , respectively.
Due to the stability of the distribution, we can write X1 =
X2 + X3, where X3 is another SαS random variable that is
independent of X2, with dispersion parameter aα1 − aα2 . If we
denote the probability density function of Xi by pXi , then we
have that

pX1(x) =
∫

pX2(x − t)pX3(t)dt

= EX3 [pX2(x − X3)]. (104)

The MMSE of estimating X2 given Y = X2 + X3 + Z
and X3, where Z is a Gaussian random variable with variance
σ 2, is equal to M(a2, σ ). Now, using the fact that the MMSE
functional is a concave function of the input distribution pX ,
we achieve the desired result [48].

2) This is a direct implication of [41, Theorem 11] since
the distribution of an SαS random variable is absolutely
continuous.

3) For α = 2 (Gaussian distribution), we simply have that

M(a, σ ) = 2a2σ 2

2a2 + σ 2 , (105)
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which directly gives the result. Hence, we assume that α < 2.
The case ε ≥ α is trivial. Thus, we also assume that ε < α.
The sketch of the proof is that we compute the mean-square
error for the estimator

T (y) =
{

0, |y| < �

y, |y| ≥ � (106)

and show that, upon an appropriate choice of �, the theorem
holds for this estimator. Consequently, it would automatically
hold for M(a, σ ).

Denote the pdf of X by

fa(x) = 1

a
f
( x

a

)
, (107)

where f is the standard SαS pdf with dispersion 1. Also, let

Fa(s, t) =
∫ t

s
fa(x)dx . (108)

Moreover, let g be Gaussian pdf with mean 0 and variance σ 2

and define

G(s, t) =
∫ t

s
g(x)dx . (109)

Then, we have that

MSE(T ) = EX,Z

[
(X − T (X + Z))2

]

= P (|X + Z | < �)EX,Z

[
X2

∣
∣ |X + Z | < �

]

+P (|X + Z | ≥ �)EX,Z

[
Z2

∣
∣ |X + Z | ≥ �

]
.

(110)

According to Bayes’ rule, we can write

fa
(
x
∣
∣|X + Z | < �

) = P (|x + Z | < �) fa(x)

P (|X + Z | < �)

= G (−�− x,�− x) fa(x)

P (|X + Z | < �)
(111)

and, similarly,

g
(
z
∣
∣|X + Z | ≥ �) = (1− Fa (−�− z,�− z)) g(z)

P (|X + Z | ≥ �) . (112)

Incorporating (111) and (112) in (110), we obtain

MSE(T ) =
∫

R

x2 fa(x)G(−�− x,�− x)dx

+
∫

R

z2g(z) (1− Fa (−�− z,�− z)) dz. (113)

We investigate the behavior of the two terms on the right-
hand side of (113) separately. For the first term, we know that,
for α < 2, we have that

lim
x→∞

f (x)

x−(1+α)
= C, (114)

where C is a positive finite value. Thus, we deduce that

x
1
2+α−δ fa(x) ∈ L2(R) (115)

for some positive δ < ε. The Cauchy-Schwartz inequality then
yields
∫

x2 fa(x)G(−�− x,�− x)dx

≤
∥
∥
∥x

1
2+α−δ fa(x)

∥
∥
∥

2
·
∥
∥
∥x

3
2−α+δG(−�− x,�− x)

∥
∥
∥

2
.

(116)

Notice that

G(−�− x,�− x) ≤
{

1, |x | ≤ �
σ 2

� g(x), |x | > �
. (117)

Hence, since α < 2, we have that
∥
∥
∥x

3
2−α+δG(−�− x,�− x)

∥
∥
∥

2

2
≤ �4−2α+2δ

2 − α + δ +
σ

2�
√
π
.

(118)

Additionally, we can write

∥
∥
∥x

1
2+α−δ fa(x)

∥
∥
∥

2
=

(∫
x1+2α−2δ f 2

a (x)dx

) 1
2

=
(∫

x1+2α−2δ 1

a2 f 2
( x

a

)
dx

) 1
2

= aα−δ
(∫

x1+2α−2δ f 2 (x) dx

) 1
2

= aα−δ
∥
∥
∥x

1
2+α−δ f (x)

∥
∥
∥

2
. (119)

Now, we investigate the second term of the right-hand side
of (113). We specifically write

∫

R

z2g(z) (1− Fa (−�− z,�− z)) dz

=
∫

R

z2g(z)
∫

R

(
1− 1[−�,�](x + z)

)
fa(x)dxdz

=
∫

R

∫

R

(
1− 1[−�,�](x + z)

)
z2g(z) fa(x)dzdx

= 2
∫ ∞

�

∫

R

z2g(z) fa(t − z)dzdt, (120)

where we have used the change of variable t = x + z. Since
both of t2g(t) and fa(t) are symmetric functions that decrease
on t ≥ σ√2, we get
∫

R

z2g(z) fa(t − z)dz

=
∫

|z|< t
2

z2g(z) fa(t − z)dz +
∫

|z|≥ t
2

z2g(z) fa(t − z)dz

≤ fa(
t

2
)

∫

R

z2g(z)dz + t2

4
g(

t

2
)

∫

R

fa(z)dz

= σ 2 fa(
t

2
)+ t2

4
g(

t

2
) (121)

for t ≥ 2σ
√

2. Thus, we have that

2
∫ ∞

�

∫

R

z2g(z) fa(t − z)dzdt

≤ 2σ 2
∫ ∞

�
fa(

t

2
)dt + 2

∫ ∞

�

t2

4
g(

t

2
)dt (122)
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for � ≥ 2σ
√

2. According to (114), there exists C ′ ∈ R for
which

f (t) ≤ C ′

t1+α , (123)

and thus

fa(t) ≤ aα
C ′

t1+α . (124)

Also, there exists A ∈ R for which

t2e−
t2
2 ≤ Ae−t . (125)

Hence, relying on (122), we get

2
∫ ∞

�

∫

R

z2g(z) fa(t − z)dzdt

≤ aα22+αC ′σ 2 1+ α
�α
+ 2Aσ 2

√
2

π
e−

�
2σ . (126)

Now, incorporating (116) and (126) in (113), we obtain

MSE(T ) ≤ aα−δ
∥
∥
∥x

1
2+α−δ f (x)

∥
∥
∥

2

(
�4−2α+2δ

4− 2α + 2δ
+ 2σ
√
π

)

+ aα22+αC ′σ 2 1+ α
�α
+ 2Aσ 2

√
2

π
e−

�
2σ . (127)

Finally, setting

� = 2ασ |log a| (128)

completes the proof.

APPENDIX E
CALCULATION OF THE GRADIENT OF Qγ

α

According to the definition of the gradient, we have that

Du Qγ
α (v) =

∂

∂ε
Qγ
α (v + εu)

∣
∣
∣
ε=0

=
∫ ∞

0
u(ρ) ∇Qγ

α {v}(ρ)dρ, (129)

where Du Qγ
α (v) is the Gâteaux derivative of Qγ

α at point v in
the direction of function u. Using the rules of differentiation
of the calculus of variations, we write

Du Qγ
α (v)=

1

(2π)α

∫

R

∂

∂ε

∣
∣
∣
∣

∫

R

W{v+εu}(ω)
(jω)γ

ejωx dω

∣
∣
∣
∣

α∣∣
∣
∣
ε=0

dx

= α

(2π)α

∫

R

λ

(∫

R

W{v}(ω)
(jω)γ

ejωx dω

)

×
∫

R

W ′{v}(r)ū(ρ)
(jρ)γ

ejρx dρ dx

= α

(2π)α

∫

R

ū(ρ)
W ′{v}(ρ)
(jρ)γ

×
∫

R

λ

(∫

R

W{v}(ω)
(jω)γ

ejωx dω

)

ejρx dx dρ

(130)

in which λ(x) = sgn(x)|x |α−1,

W ′{v}(ρ)= π
2
×

⎧
⎪⎨

⎪⎩

cos(π2 v(
3

2π |ρ| − 1)), 2π
3 < |ρ| ≤ 4π

3

− sin(π2 v(
3

4π |ρ| − 1)), 4π
3 < |ρ| ≤ 8π

3

0, otherwise

(131)

and

ū(ρ) =
{

u( 3
2π ρ − 1), 2π

3 < |ρ| ≤ 4π
3

u( 3
4π ρ − 1), 4π

3 < |ρ| ≤ 8π
3

. (132)

By breaking the outer integral of (130) into two integrals
on [ 2π3 , 4π

3 ] and [ 4π3 , 8π
3 ], and by changing the variables of

integrations, we get

Du Qγ
α (v)=

(2π)1−αα
3

∫ 1

0
u(ρ)

W ′{v}( 2π
3 (ρ + 1))

(j 2π
3 (ρ + 1))γ

×
∫

R

λ

(∫

R

W{v}(ω)
(jω)γ

ejωx dω

)

ej 2π
3 (ρ+1)x dx dρ

+ 2(2π)1−αα
3

∫ 1

0
u(ρ)

W ′{v}( 4π
3 (ρ + 1))

(j 4π
3 (ρ + 1))γ

×
∫

R

λ

(∫

R

W{v}(ω)
(jω)γ

ejωxdω

)

ej 4π
3 (ρ+1)x dx dρ.

(133)

Now, incorporating (58), (131) and some algebra, according
to (129), we obtain (60).

APPENDIX F
CALCULATION OF THE PROJECTION OPERATOR P

For a given function ṽ(ρ), define the two functionals

J (v) = ‖v(ρ) − ṽ(ρ)‖22 (134)

and

J̄(v) = 1

2

(
‖v(ρ) − ṽ(ρ)‖22 + ‖(1− v(1 − ρ))− ṽ(ρ)‖22

)

(135)

We are interested in

P{ṽ} = argmin J (v) (136)

subject to the constraint

v(x)+ v(1 − x) = 1. (137)

Notice that J (v) = J̄ (v) for any function v that satisfies
(137). Also, notice that for any function v, J̄ (v(ρ)) = J̄ (v(1−
ρ)). Since J̄ (v) is strictly convex, it has a unique minimizer.
Thus, the minimizer of J̄ (v) satisfies (137). Hence, P{ṽ} is
the unconstrained minimizer of J̄(v).

To find the minimizer of J̄ (v), we set its gradient to zero.
According to the calculus of variation, the gradient of J̄ (v) is

∇ J̄ {v}(ρ) = (v(ρ)− ṽ(ρ))− (1− v(ρ) − ṽ(1− ρ)).
(138)

By solving ∇ J̄ {v} = 0, we obtain (61).

APPENDIX G
PROOF OF PROPOSITION 2

For α = 2, using Parseval, we can directly express Qγ
2 in

the Fourier domain as

Qγ
2 (v) =

∫

R

∣
∣
∣
∣
W{v}(ω)
(jω)γ

∣
∣
∣
∣

2

dω. (139)
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Based on (58), we get

Qγ
2 (v) = 2

∫ 4π
3

2π
3

sin2
(
π
2 v(

3
2π ω − 1)

)

ω2γ

+ 2
∫ 8π

3

4π
3

cos2
(
π
2 v(

3
4π ω − 1)

)

ω2γ dω. (140)

Performing ordinary algebraic manipulations, (140) leads to

Qγ
2 (v) = = 2

((2π

3

)1−2γ − (4π

3

)1−2γ
) ∫ 1

0

sin2
(
π
2 v(ρ)

)

(ρ + 1)2γ
dρ

+ 2

2γ − 1

((4π

3

)1−2γ − (8π

3

)1−2γ
)
. (141)

Now, using (57), we get

Qγ
2 (v) = 2

((2π

3

)1−2γ − (4π

3

)1−2γ
)

×
∫ 1

2

0
sin2 (π

2
v(ρ)

)( 1

(ρ + 1)2γ
− 1

(2− ρ)2γ
)

dρ

+ 2

2γ − 1

((π

2

)1−2γ − π1−2γ
)
. (142)

However, since (ρ+1)−2γ−(2−ρ)−2γ is positive on [0, 1
2 ], the

function v(ρ) that vanishes on this interval minimizes Qγ
2 (v).

Consequently, we obtain v(ρ) = 0 on [0, 1
2 ], and v(ρ) = 1 on

( 1
2 , 1] as the minimizer of Qγ

2 (v).
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