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ABSTRACT

We present a method for designing steerable wavelets that can
detect local centers of symmetry in images. Based on this design,
we then propose an algorithm for estimating the locations and
the orientations of M-fold symmetric junctions in biological micro-
graphs.

The analysis with 2-D steerable wavelets allows us to have
detections at different scales and arbitrary orientations. Owing
to the steering property of our wavelets the detection is fast and
accurate.

We provide experimental results on both synthetic images and
biological micrographs to demonstrate the performance of the
algorithm.

Index Terms— symmetries, steerability, wavelets

1. INTRODUCTION

Bilateral and 3-fold symmetric objects are common in nature. In
particular, they can be found in various biological samples with
hexagonal structures, such as the retinal pigment of the human
eye, the parenchyma of maize, the surface of many diatoms and
the stem cross-section of plants like convallaria. The ability to
detect junction points with M-fold symmetry can thus be very
useful for the quantitative analysis of microscopic images. Indeed,
in addition to generating valuable image statistics, it can support
further image-processing tasks such as cell segmentation. The
challenge is to extract the key points accurately even when the
image is corrupted with noise.

Most existing approaches to junction detection fall in one of
the following categories: methods based on detecting and group-
ing edges [1], those relying on structural image analysis [2] and
approaches based on matching parametric junction templates [3],
including designs based on steerability [4, 5]. Many detectors
from the latter class are designed for specific types of junctions,
and most (with the exception of steerable designs) involve dis-
cretized angles when matching the template to image features.
The other classes primarily differentiate between junctions and
edges or other keypoints, and do not always separate junctions of
different multiplicities or symmetry orders.

In this paper, we propose an algorithm for junction detection in
a scale and rotation invariant way. The core of our method is based
on 2-D steerable wavelet frames, which provide both a multiscale
analysis and angular selectivity. More specifically, we design 2-D
steerable wavelets that are polar separable in the Fourier domain.
The frequency localization of these wavelets is defined by a radial
function, while their symmetry pattern is specified by an angular
profile.

The approach presented here differs from existing methods
in several ways. First of all, our framework has a multiresolu-

tion detection scheme. In addition, since the analysis functions
constitute a tight frame, they can be used for reconstructing the
image. The Parseval-type identity for tight frames also allows for
an energy-based analysis in the transform domain. The property
of steerability, and our fast and accurate steering method based
on polynomial root finding, make it possible to detect symmetry
centers and junctions at arbitrary orientations without any dis-
cretization of the rotation angle. Finally, we use a variational
framework for systematically deriving steerable templates with
the desired symmetry properties and maximal angular concentra-
tion. As a result of this variational formulation, our detectors have
optimal energy concentration with respect to the angular patterns
of interest. The formulation is similar to Slepian filter design and
can be recast as a low-dimensional eigenvector problem [6].

2. GENERAL FRAMEWORK

To introduce the notations, we recall the definition of steerability
based on [7], and the parametric framework for 2-D steerable
wavelet transforms described in [8]. The detector construction is
discussed next.

2.1. Steerability

In this paper we use x and (r,θ), and ω and (ρ,φ), for the
Cartesian and polar coordinates in spatial and Fourier domains,
respectively. We also use f (x ) and fpol(r,θ ) for the Cartesian and
polar parametrizations of the same function f (similarly in the
Fourier domain).

Definition 1 A function ψ on the plane is steerable in the finite
basis {ξ(1), . . . ,ξ(N)} if for any rotation matrix Rθ0

, we can find
coefficients u1(θ0), . . . , uN (θ0) such that

ψ(Rθ0
x ) =

N
∑

n=1

un(θ0)ξ
(n)(x ).

In particular, if

ψpol(r,θ) =
∑

n∈S

unξ
(n)
pol(r,θ) (1)

for some finite set S ⊂ Z, where ξ(n) is polar-separable as

ξ
(n)
pol(r,θ) = ηn(r)e

jnθ , (2)

then
ψpol(r,θ + θ0) =

∑

n

ejnθ0 unξ
(n)
pol(r,θ).

This means that any function ψ of the above form is steerable, and
its steered coefficients for angle θ0 are obtained from the original
ones by multiplication with ejnθ0 .
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2.2. Steerable wavelet frames

We now briefly review a construction that combines the concept
of steerability with the concept of a tight wavelet frame (we refer
to [8] for more details). The resulting transform analyzes images
in a mathematically stable way using multiple dilated versions of
a set of steerable templates. Hence it can be used for detecting
features of interest at different scales and for extracting their local
orientation.

The starting point is an isotropic function h(ρ) such that the
shifts and dilations of F−1{h(ρ)} form a wavelet frame. In this
work we use Simoncelli’s isotropic wavelet [9] defined by

h(ρ) =

¨

cos
�

π

2
log2

�

2ρ
π

��

, π

4
< ρ ≤ π

0, otherwise

One can then show that the inverse Fourier transform of

ξ̂
(n)
pol(ρ,φ) = h(ρ)ejnφ . (3)

is of the form (2) and is therefore steerable. In addition, ξ(n)pol(ρ,φ)
still generates a tight frame. By choosing N distinct values for the
integer n we can thus form an N -channel tight frame of steerable
wavelets.

In the sequel we will use i and k to index the scale and shift
of the basis functions. The values of n are taken from a predefined
set S = {n1, . . . , nN}, called the set of harmonics, which is one of
our design parameters.

From the original steerable wavelet representation given
above, we can construct new steerable representations, by using
an orthogonal shaping matrix U to define the new steerable frame
functions:











ψ
(1)
i,k
...

ψ
(N)
i,k











= U











ξ
(n1)
i,k
...

ξ
(nN )
i,k











.

The number of channels here corresponds to the number of har-
monics.

The new wavelets span the same space as the wavelet frame
ξ
(n)
i,k . The role of the shaping matrix U is to give the wavelet

functions ψ(n)i,k a desired angular profile.
Our goal is to design a wavelet for the detection of symmetric

patterns by optimizing a coefficient vector u = (u1, . . . , uN ), with
uHu = 1. This vector forms the first row of U. From this vector
we get the first channel of wavelets ψ =

∑

n unξn and find the
remaining channels by choosing N −1 other vectors orthogonal to
u (note that these vectors can be complex). Other non-orthogonal
designs may also be considered if specific design objectives are to
be achieved, but these fall outside the focus of the present paper.

3. DESIGN OF M-FOLD SYMMETRIC WAVELETS

We impose an M-fold symmetric pattern on ψ by minimizing an
energy functional that favors M-fold symmetries. Since rotation
and symmetries in the space domain carry over to the frequency
domain we can define this energy in the latter. This results in a
substantial simplification of the problem, owing to the fact that
the wavelet function (ψ) is polar-separable in the Fourier domain
but not in space. As a result, we can optimize the angular profile

of the wavelet by defining the Fourier-based energy for the angular
factor alone, without any influence from the radial factor.

Using (3) and (1), we arrive at the following polar factoriza-
tion of ψ̂:

ψ̂(ρ,φ) = h(ρ)
∑

n∈S

unejnφ = h(ρ)ψ̂(φ), (4)

where, with some abuse of notation, we have used ψ̂(φ) to denote
the angular factor of ψ̂(ρ,φ).

We then define the energy functional E[ψ̂] as

E[ψ̂] =

∫ +π

−π
|ψ̂(φ)|2w(φ)dφ,

where w(φ)≥ 0 is an M -fold symmetric weighting function with
M equidistant minima. This will force the solution ψ̂ to be local-
ized symmetrically near the M-fold minima.

It follows from (4) that the above integral energy can be
expanded as

E[ψ̂] =

∫ +π

−π

�

�

�

�

�

∑

n∈S

unejnφ

�

�

�

�

�

2

w(φ)dφ

=
∑

n′∈S

∑

n∈S

u′nun

∫ +π

−π
ej(n−n′)φw(φ)dφ (5)

=
∑

n′∈S

∑

n∈S

u′nW (n− n′)un = uHWu, (6)

where W is the Hermitian-symmetric matrix with entries indexed
by n, n′ ∈ S:

[W]n,n′ =

∫ +π

−π
ej(n−n′)φw(φ)dφ.

Based on the previous considerations we have a quadratic
optimization problem with quadratic constraints. Such problems
are in general difficult to solve, but this particular instance (with
uHu = 1) admits an analytic solution that is readily computable:
the solution is simply an eigenvector corresponding to the smallest
eigenvalue of W.

A particular example of a 3-fold symmetric wavelet obtained by
the proposed method can be seen in Fig. 1. The weight function
w(φ) is 2π

M
-periodic with w(φ) = φ2 for |φ| ≤ π

M
, to achieve

maximal energy concentration about the minima in the sense of
variance.

Fig. 1: 3-fold symmetric wavelet in the space domain; from left:
magnitude, real and imaginary parts. Harmonics: S = {3n : n =
0, . . . , 9}.
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4. APPLICATION TO JUNCTION DETECTION

4.1. Steering

To detect symmetry centers in an image we need to determine the
maximum response over all orientations of the detector wavelet.
The task of finding the optimal angle is also known as "steering"
and can be formulated as follows. Let

�

q1, . . . , qN
	

be the coeffi-
cients of the N channels that are computed by analyzing the image
at scale i and position k using the original N channel wavelets:
n

ξ
(n1)
i,k (r,θ), . . . ,ξ(nN )

i,k (r,θ)
o

. We wish to rotate the wavelets ψ at

each (i, k) to maximize |〈ψi,k(·, ·+ θ0), f 〉| as a function of θ0.
Thus, the function to maximize at each (i, k) is

Q(θ0) =

�

�

�

�

�

〈
∑

n∈S

ejnθ0 unξ
(n)
i,k , f 〉

�

�

�

�

�

=

�

�

�

�

�

∑

n∈S

qnune−jnθ0

�

�

�

�

�

2

(7)

(note that the inner product is conjugate-linear in the first argu-
ment).

This is a trigonometric polynomial in θ0 which can be maxim-
ized efficiently by finding the roots of its derivative.

More precisely, we can use the fact that for an M -fold pattern
we use harmonics that are multiples of M , in order to reduce the
order of the polynomial to solve. This is done by making a change
of variable in the following way:

For a set of harmonics S = {Mk : k = k0, k0+1, . . . , k0+N−1 ∈
Z}, we introduce the variable z = ejMθ0 . We are then looking for
the maximum of the polynomial

Q(z) =





k0+N−1
∑

k=k0

rkzk









k0+N−1
∑

k=k0

rkzk





on the unit circle, where rk = qMkuMk. This maximum happens
at a point where the derivative of Q(z) with respect to θ0 is zero.
We find all such points and evaluate Q(z) at all of them to find the
maximum.

Q(z) can be transformed to an easily processable form:

Q(z) =
∑

k

skzk,

where s = r[·] ∗ r[−·] is the auto correlation of r. Then

d

dθ0
Q(z) = (jM)

∑

k

kskzk.

Having the coefficients of d
dθ0

Q(z), we can compute its complex
roots. Let ζ be the root on the unit circle for which Q(z) is maxim-
ized. From the definition z = ejMθ0 , the optimal steering angle is
then given by the relation

θ0 =
Ýζ
M

.

Note that due to M -fold symmetry, θ0+m 2π
M

, m ∈ Z, are equivalent
solutions.

4.2. Summary of the algorithm

The algorithm we propose estimates the number of junctions
(without a priori knowledge), their center and the orientation
of the corresponding edges. The main steps of the algorithm are:

(1) (Wavelet analysis with optimally steered wavelets)
First we design the M-fold symmetric wavelet in the Fourier do-
main based on the previously described method. We decompose
the image with the steerable wavelet and, at each point, we de-
termine the angle θ0, such that the “detector response” (7) is
maximized. The output of this first stage is a map of maximal
steerable wavelet responses (Q(i, k)) at every scale and position.
(2) (Maximum-intensity projection across scales)
To aggregate the junction detections from the different scales we
perform a maximum-intensity projection. For each position we
keep the coefficient corresponding to the largest detector response:

Q(k) =max
i
(Q(i, k)).

This is justified since the wavelets are normalized.
(3) (Thresholding and local maxima detection)
Assuming that there are many more ordinary pixels in the image
than junctions we can reduce the amount of computations and
neglect the background pixels by suppressing the points having a
smaller detector response than the mean of the whole image.

Since the same symmetry center (junction) may be detected
at several nearby locations and across scales, to have a better
localization of junctions and also eliminate redundant detections,
we follow the thresholding step by a local maximum search (within
a window of predefined size).

5. EXPERIMENTAL RESULTS

To evaluate the performance of the algorithm, we first use a test
image (Fig. 2) consisting of a 3-4 uniform tiling [10], where the
goal is to detect 3-fold symmetric junctions.

We study the effect of the following parameters on the per-
formance of the algorithm: (i) the size of the junctions, (ii) the
blurring of the edges, (iii) and the presence of ambient noise. The
first image is the original one, here one can observe the detections
at different scales. The second image is the blurred version of
the original one with a 3× 3 moving average kernel. The third
image is corrupted with additive Gaussian noise with a mean of
zero and standard deviation of 50 (for an intensity range of 0 to
255). To the last image we add salt and pepper noise, by randomly
replacing 5% of the pixels with black and 5% with white pixels.

Figs. 3 and 4 show the results of our detection algorithm
applied to real microscopy images. Fig. 3 shows a stem cross
section of Convallaria, cropped to size 1024 × 1024 pixels. Fig. 4
shows a leaf cross section of Maize, cropped to size 1024 × 1024
pixels. In both cases most of the junctions are detected, including
highly distorted and noisy ones.

6. CONCLUSION

We presented a construction of M -fold symmetric steerable tight
wavelet frames and an algorithm for the detection of symmetries
and junctions in microscopy images. The attractive features of
the algorithm are (i) the multiscale approach and the angular
selectivity, which make it possible to obtain a precise estimate
of the junctions across scales; (ii) the steering property of the
detector wavelet, which allows us to make the detections very
efficiently regardless of the orientation of the pattern, without a
need to reprocess the image for each angle; and (iii) the tight frame
property that permits energy-based analysis and reconstruction
from features. Future work can focus on classification of junctions
based on their symmetry order where we can take advantage of
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Fig. 2: Detection of 3-fold symmetric junctions in synthetic
data. Row 1, Col. 1: Junctions of different size; Row 1, Col.
2: Smoothed junctions of different size; Row 2, Col. 1: Junctions
of different size corrupted with additive Gaussian noise, mean: 0,
standard deviation: 50; Row 2, Col. 2: Junctions of different size
corrupted with ”Salt and Pepper” noise, 5%.

Fig. 3: Junctions (shown using red stars) in a Convallaria stem
cross section (Courtesy of J. Artacho, BIOP, EPFL).

the selectivity of the approach, and on benefiting from the tight
frame property for the enhancement and reconstruction of images
based on symmetric features.

Fig. 4: Junctions in the cross-section through the middle of a
Maize leaf [11].
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