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ABSTRACT
Interpolation is a vital tool in biomedical signal process-
ing. Although there exists a substantial literature dedi-
cated to noise-free conditions, much less is known in the
presence of noise. Here, we document the breakdown of
standard interpolation for noisy data and study the per-
formance improvement due to regularized interpolation.
In particular, we numerically investigate the Tikhonov
(quadratic) regularization. On top of that, we explore
non-quadratic regularization and show that this yields fur-
ther improvements. We derive a novel bounded regular-
ization approach to determine the optimal solution. We
justify our claims with experimental results.
Index Terms— Interpolation, B-spline, Regularization,

Tikhonov criterion, Total Variation, Bounded Optimization.

1. INTRODUCTION

Interpolation is an essential ingredient of biomedical applica-
tions such as resampling or registration, and sound theory and
efficient methods have already been developed in the noise-
free case [1]. When data is significantly corrupted by noise,
however, the standard techniques fail. Tikhonov-regularized
interpolation — quadratic functional — is a potential rem-
edy that has been proposed in [2], but there it is restricted to
the 1-D case. In this work, we extend that solution to mul-
tiple dimensions for the specific case of the gradient opera-
tor, and experimentally verify its performance by comparing
against standard (non-regularized) interpolation. In addition,
we consider functionals based on the Lp norm of a suitable
differential operator with 1 ≤ p ≤ 2. For p �= 2, the so-
lution requires a non-linear optimizer. We therefore propose
a general bounded-optimization approach and use it to show
experimentally that, in the presence of noise, non-quadratic
regularization yields better interpolation as compared to the
Tikhonov method.

2. STANDARD INTERPOLATION

Interpolation is the process of computing a continuously de-
fined function fint(x), x = (x1, x2, . . . , xd) ∈ R

d given sam-
ples g[k], k = (k1, k2, . . . , kd) ∈ Z

d. The interpolant fint is
chosen to belong to the functional space Vϕ defined as

Vϕ = {s(x) : s(x) =
∑
k∈Zd

c[k] ϕ(x − k)}, (1)

where ϕ is called the synthesis function [1]. For a given
ϕ, it is desired to find the coefficients {c[k]} of fint such
that fint(x)|

x=k
= g[k]. Up to technical details related to

the choice of ϕ, the (unique) solution is given by c[k] =
(g ∗ hint) [k]. Thus, the coefficients can be directly obtained
by convolving (linear filtering) the samples {g[k]} with the
interpolation filter hint[k] with frequency response

Hint(e
j ω) =

1∑
k∈Zd ϕ̂(ω + 2 π k)

, (2)

where ϕ̂(ω) for ω ∈ R
d is the Fourier transform of ϕ.

2.1. Interpolation in the Presence of Noise

According to the theory of approximation, the higher the or-
der of approximation of ϕ, the better the quality of interpo-
lation. Unfortunately, the presence of noise violates the as-
sumptions of this approximation-theoretic argument because
the signal is not deterministic anymore. The imperfections
caused by interpolating noisy samples nevertheless still de-
pend on the behavior of the corresponding interpolator ϕint
which has the Fourier transform ϕ̂int(ω) = Hint(e

j ω) ϕ̂(ω).
Consider now the following experiment: First rotate some

input image using a high-quality interpolator. Then, add the
proper amount of zero-mean white Gaussian noise to obtain
a prescribed signal-to-noise ratio (SNR). To avoid boundary
artifacts, compute all SNRs over a circular region concentric
with the image. Finally, to compare linear and cubic B-spline
interpolation, rotate back the noisy image using either method
to get the final (output) image. We have plotted the SNR of the
output image in Figure 1. In contradiction to approximation-
theoretic arguments, we observe that linear outperforms cubic
under noisy conditions. Qualitatively, this can be explained as
follows: the Fourier transform of the cubic B-spline interpola-
tor has a higher gain for certain high frequencies compared to
that of the linear B-spline interpolator [3]. This implies that,
for certain noise levels, spurious high frequencies will be am-
plified, which leads to a poor performance of cubic B-spline
as shown in Figure 1.

3. REGULARIZED INTERPOLATION

Given noisy data g[k], k ∈ Z
d, interpolation with regulariza-

tion [2] aims to obtain a continuous space function f ∈ Vϕ,
that is “smooth” while ensuring that f(k) are “close” to g[k].
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Fig. 1. Rotation experiment in the presence of noise: Failure
of standard interpolation.

Mathematically, the problem is formulated as

freg = arg min
f∈Vϕ

J {f}, (3)

where

J {f} = ‖g[k]− f(k)‖
2
�2

+ λ

∫
Rd

|L{f}(x)|
p

dx. (4)

Since, freg ∈ Vϕ, (3) can be reformulated as

freg(x) =
∑
k∈Zd

creg[k] ϕ(x − k), (5)

where
creg[k] = arg min

c[k]|
k∈Zd

J {c}, (6)

where J {c} is the cost given by

J {c} =
∑
k

|g[k]− (c ∗ b) [k]|2

+ λ

∫
Rd

∣∣∣∣∣∣
∑
k∈Zd

c[k] L{ϕ}(x− k)

∣∣∣∣∣∣
p

dx, (7)

where 1 ≤ p ≤ 2, b[k] = ϕ(x)|
x=k

, L is a suitable differ-
ential operator (e.g., Gradient or Laplacian), and λ > 0 is the
regularization parameter.
Thus, regularized interpolation (3) is similar to standard

interpolation, except that now the coefficients are obtained
from (6). Moreover, the relation between {creg[k]} and the
samples {g[k]} depends on the value of p. It should also
be noted that, as λ → 0, the effect of regularization dimin-
ishes and freg eventually performs standard interpolation of
the noisy data g[k] (which is also the least-squares solution).

3.1. Quadratic (Tikhonov) Functional

Choosing p = 2 in (7) leads to a quadratic regularization.
In 1D, the solution has been worked out in [2]. Here, we

extend that solution to d dimensions. We shall deal explicitly
with the gradient operator henceforth, noting that a similar
analysis applies to the Laplacian operator. Choosing L = ∇
and p = 2, the solution to (6) can be obtained as c[k] =
(g ∗ hλ) [k], which is linear in {g[k]}, and where hλ[k] is the
digital-correction filter with frequency response

Hλ(ej ω) =
∑
k∈Zd

ϕ̂�(ω + 2 π k)

⎛
⎜⎝
∣∣∣∣∣∣
∑
k∈Zd

ϕ̂(ω + 2 π k)

∣∣∣∣∣∣
2

+ λ

d∑
i=1

∑
k∈Zd

|ωi + 2 π ki|
2
|ϕ̂(ω + 2 π k)|

2

⎞
⎠
−1

(8)

where ∂/∂xi
F
←→ (j ωi), and � represents the complex con-

jugate. As expected when λ → 0, (8) becomesHint(e
j ω) and

we get back the standard interpolation filter. Besides, while
Hint can be separableHλ is never, for λ > 0.

3.2. Non-Quadratic (NQ) Functional

For 1 ≤ p < 2, the regularization in (7) is non-quadratic.
The case L = ∇ and p = 1 corresponds to the Total-Variation
(TV) regularization introduced in [4], which has recently
gained attention in deconvolution problems [5]. For p �= 2,
one immediately sees that the solution is nonlinear. More-
over, the integral in (7) does not have a closed form expres-
sion. Hence the regularization term must be discretized.

3.2.1. Discretization

We discretize the regularization term on the grid of the sam-
ples. For the 2-D case, using the fact that u ∈ Vϕ, we have

∫
R2

|∇f(x)|
p

dx ≈
∑
i,j

(√
η2
1 [i, j] + η2

2 [i, j]

)p

= Rp{η1, η2}, (9)

where η1[i, j] = (c ∗ ϕx1
) [i, j], η2[i, j] = (c ∗ ϕx2

) [i, j],
and ϕxk

[i, j] = ∂ϕ/∂xk|x1=i,x2=j . Therefore, the cost to
be minimized is

JNQ{c} =
∑
i,j

|g[i, j]− (c ∗ b) [i, j]|
2
+λRp{η1, η2}. (10)

3.2.2. Minimization

We resort to the bounded-optimization method (also called
theMajorization-Minimization (MM)method) which has also
been recently applied to TV deconvolution [5]. In brief, we
first boundJNQ{c} by a weighted-quadratic functionalJWQ{c}.
Then, we repeatedlyminimizeJWQ (which is easier than min-
imizing JNQ) with updated weights to ensure the decrease of
JNQ.
To obtain JWQ, it has been noted in [6] that

|x|
p
≤

2− p

2
|x0|

p
+

p

2
x2 |x0|

p−2
, (11)
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where 1 ≤ p < 2, for some x0 �= 0, and where the equality
holds only when x = x0. As this inequality is preserved under
summation and multiplication by a positive constant [6],

λRp{η1, η2} ≤ λRWQ{θ}, (12)

where

RWQ{θ} =
2− p

2

N∑
i,j=1

|θ[i, j]|p

+
p

2

N∑
i,j=1

(
η2
1 [i, j] + η2

2 [i, j]
)
|θ[i, j]|

p−2
,

and where θ[i, j] =
√

η2
1,0[i, j] + η2

2,0[i, j] is obtained for
some {c0[i, j]} in (9). Thus, for a given {θ[i, j]}, JNQ{c}
is bounded above as

JNQ{c} ≤ JWQ{c, θ}, (13)

where

JWQ{c, θ} =

N∑
i,j=1

|g[i, j]− (c ∗ b) [i, j]|
2

+ λRWQ{θ}.

Then, (13) leads to the following MM-algorithm:

Step 1: Initial estimate = {c0[i, j]}; t = 0
Repeat Steps 2 and 3 until Stop Criterion is met
Step 2: Update {θt[i, j]} using {ct[i, j]}; Set t = t+1
Step 3: Minimize JWQ{ct, θt−1} to obtain {ct[i, j]}

Since JWQ{ct, θt−1} is quadratic, its minimization can
be done in many ways, for instance, either by solving a lin-
ear system of equations or by the conjugate-gradient (CG)
method. The latter is a widely used method whenever the size
of the signal is very large (especially images). We then update
{θt[i, j]} using the current {ct[i, j]}. Repeating this process
ensures thatJNQ is reduced at each iteration because of the in-
equality (13). This method is also called the re-weighted least
squares (RWLS) because the weights {θ[i, j]} are updated re-
peatedly each time we minimize JWQ{ct, θt−1}. In this case
the proposed algorithm is exactly the same as the multiplica-
tive form of the half-quadratic method [7] with the auxiliary
variable |θ[i, j]|p−2, the dual function

∑N

i,j=1
2−p
2 |θ[i, j]|

p,
and with steps 2 and 3 forming the alternate minimization se-
quence.

4. EXPERIMENTS

Here, we choose ϕ(x) = β3(x1)β3(x2) (the separable cu-
bic B-spline) for regularized interpolation and the TV func-
tional for the non-quadratic regularization. To test the per-
formance of the Tikhonov-regularized cubic-spline and TV-
regularized cubic-spline interpolation, we perform rotation
experiments similar to those described in Section 2.1. The op-
timal λ was found empirically for both methods. They were
then compared with standard interpolation techniques such as
nearest-neighbor interpolation, standard linear interpolation,
and standard cubic interpolation [1].
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Fig. 2. SNR comparison for Experiment 1: Single (Fluores-
cence) image.

4.1. Single Image

We make use of the (512× 512) biological specimen shown
in the inset of Figure 2 for this experiment. For a given in-
put SNR, we perform 25 rotation experiments with a rotation
angle drawn at random from [0, 2 π) and averaged the output
SNR over these 25 realizations. We then repeat this for dif-
ferent input SNR values. We show in Figure 2 the resulting
plots.
Several observations are in order. Firstly, we note that

the nearest-neighbor method always performs poorly, which
is quite expected. Secondly, for input SNRs below 28 dB,
linear interpolation does better than cubic B-spline, a behav-
ior that we already discussed in Section 2.1. The Tikhonov-
regularized method performs better than any of the
non-regularized ones. However, it tends to blur edges (see
Figure 3); hence, it is not as effective as the TV-regularized
interpolation which always outperforms all methods. This in-
dicates that TV-regularized interpolation is more sturdy.
Another significant observation is that the SNR of the two

regularized methods (for cubic B-spline) converge to that of
the standard cubic B-spline for relatively high input SNRs.
This is to be expected because, under very low noise, the ef-
fect of regularization is negligible. Moreover, all the methods
saturate beyond a particular input SNR because of the inher-
ent degradation caused by the very process of interpolation.

4.2. Multiple Images

We want now to test the performance of the methods on dif-
ferent images. For this, we obtained from [8] a stack of clean
MRI images (T1, T2, PB) with uniform intensity and 9 mm
slice thickness. We zero-padded the images to size (300× 300)
to provide margins for the rotations. For a given input SNR,
we perform 100 rotation experiments; for each one, we pick at
random a slice from the stack and rotate it by a random angle
that is uniformly distributed over [0, 2 π). We then average
the output SNR over the 100 realizations. This was repeated
for different input SNRs and lead to Figure 4.
The behavior is qualitatively similar to that found in Fig-

ure 2; the same explanations are valid here too. However, the
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Fig. 3. A realization of the second experiment. From left to right: Original Image; Noisy-Rotated Image: rotation by 40◦, 11.68
dB; Tikhonov-regularized interpolation: 18.06 dB; TV-Regularized interpolation: 20.261 dB. The SNRs were computed over
the set of non-zero pixels of the original image.
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Fig. 4. SNR comparison for experiment 2: MRI Stack.

main point now is that the images used for the experiments are
different from one another. A consistently superior behavior
of TV-regularized method in this scenario clearly illustrates
its robustness compared to the other methods. We present in
Figure 3 one realization of the second experiment. As antic-
ipated, the results for the Tikhonov-regularized interpolation
appear blurred compared to the TV-regularized solution.

5. SUMMARY, CONCLUSIONS, AND DISCUSSION

Standard interpolation fails to work when signals are cor-
rupted by excessive noise. The use of a quadratic functional
(Tikhonov-regularized interpolation) can improve the situa-
tion but compromises the sharpness of the output. In this
work, we have proposed the use of a non-quadratic func-
tional such as TV (which preserves sharp features) for reg-
ularized interpolation. We have experimentally quantified the
improvement in performance. We conclude that regulariza-
tion based on non-quadratic functionals (such as TV) yield
better results compared to the Tikhonov regularized method.
Our main concern here is to highlight the improved per-

formance of regularized interpolation; we did skip over finer
details such as choosing the best λ since significant litera-
ture is already dedicated to this problem [9]. Of greater in-
terest is the fact that regularized interpolation does not end
with the case of Gaussian noise. Instead, by choosing the log-

likelihood corresponding to the noise distribution as the data
term, and by designing a suitable algorithm, our future work
is to extend this formulation to data corrupted by Poisson and
Speckle noise.
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