Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Blind Denoising
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Blind Optimization of Algorithm Parameters for Signal Denoising by Monte-Carlo SURE

S. Ramani, T. Blu, M. Unser

Proceedings of the Thirty-Third IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'08), Las Vegas NV, USA, March 30-April 4, 2008, pp. 905-908.


We consider the problem of optimizing the parameters of an arbitrary denoising algorithm by minimizing Stein's Unbiased Risk Estimate (SURE) which provides a means of assessing the true mean-squared-error (MSE) purely from the measured data assuming that it is corrupted by Gaussian noise. To accomplish this, we propose a novel Monte-Carlo technique based on a black-box approach which enables the user to compute SURE for an arbitrary denoising algorithm with some specific parameter setting. Our method only requires the response of the denoising algorithm to additional input noise and does not ask for any information about the functional form of the corresponding denoising operator. This, therefore, permits SURE-based optimization of a wide variety of denoising algorithms (global-iterative, pointwise, etc). We present experimental results to justify our claims.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/ramani0802.html,
AUTHOR="Ramani, S. and Blu, T. and Unser, M.",
TITLE="Blind Optimization of Algorithm Parameters for Signal Denoising
	by {M}onte-{C}arlo {SURE}",
BOOKTITLE="Proceedings of the Thirty-Third {IEEE} International
	Conference on Acoustics, Speech, and Signal Processing
	({ICASSP'08})",
YEAR="2008",
editor="",
volume="",
series="",
pages="905--908",
address="Las Vegas NV, USA",
month="March 30-April 4,",
organization="",
publisher="",
note="")

© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved