Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Monte-Carlo SURE
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Monte-Carlo SURE: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms

S. Ramani, T. Blu, M. Unser

IEEE Transactions on Image Processing, vol. 17, no. 9, pp. 1540-1554, September 2008.


We consider the problem of optimizing the parameters of a given denoising algorithm for restoration of a signal corrupted by white Gaussian noise. To achieve this, we propose to minimize Stein's unbiased risk estimate (SURE) which provides a means of assessing the true mean-squared error (MSE) purely from the measured data without need for any knowledge about the noise-free signal. Specifically, we present a novel Monte-Carlo technique which enables the user to calculate SURE for an arbitrary denoising algorithm characterized by some specific parameter setting. Our method is a black-box approach which solely uses the response of the denoising operator to additional input noise and does not ask for any information about its functional form. This, therefore, permits the use of SURE for optimization of a wide variety of denoising algorithms. We justify our claims by presenting experimental results for SURE-based optimization of a series of popular image-denoising algorithms such as total-variation denoising, wavelet soft-thresholding, and Wiener filtering/smoothing splines. In the process, we also compare the performance of these methods. We demonstrate numerically that SURE computed using the new approach accurately predicts the true MSE for all the considered algorithms. We also show that SURE uncovers the optimal values of the parameters in all cases.

Supplementary material

  • Mathematical addendum (PDF file) (80 kb). Solution to the differentiability issue associated with the Monte-Carlo divergence estimation proposed (in Theorem 2) in the main body of the paper.

@ARTICLE(http://bigwww.epfl.ch/publications/ramani0803.html,
AUTHOR="Ramani, S. and Blu, T. and Unser, M.",
TITLE="Monte-{C}arlo {SURE}: {A} Black-Box Optimization of
	Regularization Parameters for General Denoising Algorithms",
JOURNAL="{IEEE} Transactions on Image Processing",
YEAR="2008",
volume="17",
number="9",
pages="1540--1554",
month="September",
note="")

© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved