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This material supplements some sections of the paper entitled “Monte-Carlo SURE: A Black-Box
Optimization of Regularization Parameters for General Denoising Algorithms”. Here, we elaborate
on the solution to the differentiability issue associated with the Monte-Carlo divergence estimation
proposed (in Theorem 2) in the paper. Firstly, we verify the validity of the Taylor expansion-based
argumentation of Theorem 2 for algorithms like total-variation denoising (TVD). Following that, we
give a proof of the second part of Theorem 2 which deals with a weaker hypothesis (using tempered
distributions) of the problem.

I. TOTAL-VARIATION DENOISING: VERIFICATION OF TAYLOR EXPANSION-BASED HYPOTHESIS

In the paper, we considered the discrete-domain formulation for total-variation denoising (TVD)
where we minimize the cost

JTV(u) = ‖y − u‖2 + λTV{u}, (1)

where TV{u} =
∑

k

√

(Dhu)[k]2 + (Dvu)[k]2 is the discrete 2D total variation norm andDh

andDv are matrices corresponding to the first order finite difference in the horizontal and vertical
directions, respectively. We will concentrate only on the bounded-optimization (half-quadratic) algo-
rithm developed in [1]. However, since a typical implementation of TVD will always involve finite
differences in place of continuous domain derivatives the analysis can be easily extended to other
algorithms including the variant in [1] and those based on Euler-Lagrange equations. We show that
the bounded-optimization algorithm for TVD admits first andsecond order derivatives with respect
to the datay and therefore satisfies the stronger hypothesis (Taylor expansion-based) of Theorem 2.

The TVD algorithm is described by the following recursive equation [1]: the signal estimate at
iterationk + 1 denoted by theN × 1 vector fk+1

λλλ
is obtained by solving the linear system

Mkfk+1
λλλ

= y, (2)

whereMk is theN ×N system matrix at iterationk given by

Mk = I + DT
hΛkDh + DT

v ΛkDv, (3)

andΛk = diag{wki ; i = 1, 2, . . . , N}, with

wki =
λ

2
√

(Dhf
k
λλλ
)2i + (Dvf

k
λλλ
)2i + κ

, (4)

where(D∗f
k
λλλ )i is theith element of the vectorD∗f

k
λλλ andκ > 0 is a small constant that prevents the

denominator ofwki going to zero (or else the algorithmfλλλ itself may become numerically unstable).
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Differentiating (2) with respect toy, we obtain

∂Mk

∂y
fk+1
λλλ

+ Mk ∂f
k+1
λλλ

∂y
︸ ︷︷ ︸

J
k+1

fλλλ

= I, (5)

whereJk+1
fλλλ

is the Jacobian matrix offk+1
λλλ

at iterationk + 1. If Mk
mn represents themnth element

of Mk and ym and fkm represent themth elements ofy and fkλλλ , respectively, then using Einstein’s
summation notation (repeated indices will be summed over unless they appear on both sides of an
equation) (5) can be written as

∂Mk
mn

∂yp
fk+1
n +Mk

mn

∂fk+1
n

∂yp
= δmp, (6)

where, for example, the indexn is summer over in both the terms on the L.H.S of the above equation.
Differentiating (6) a second time, we obtain

∂2Mk
mn

∂yl∂yp
fk+1
n +

∂Mk
mn

∂yp

∂fk+1
n

∂yl
+
∂Mk

mn

∂yl

∂fk+1
n

∂yp
+Mk

mn

∂fk+1
n

∂yl∂yp
= 0. (7)

It is clear that theN×N×N tensorr =
{
∂fk+1

n

∂yl∂yp

}N

n,l,p=1
is the desired second derivative in the Taylor

expansion in Theorem 2. We will show that for a given(l, p), all the terms in (7) are well-defined,
so that theN × 1 vectorrlp = ∂fλλλ

k+1

∂yl∂yp
can be obtained by solving a linear system.

Firstly, we analyze∂M
k
mn

∂yp
which is given by

∂Mk
mn

∂yp
=
(
Dhqm

Dhqn
+Dvqm

Dvqn

) ∂wkq

∂yp
, (8)

with

∂wkq

∂yp
= −

(
2

λ

)2

(wkq )
3
(

(Dhf
k
λλλ )qDhqi

+ (Dvf
k
λλλ )qDvqi

) ∂fki
∂yp

, (9)

where the indexq is not summed over on the R.H.S of the above equation.
Similarly,

∂2Mk
mn

∂yl∂yp
=
(
Dhqm

Dhqn
+Dvqm

Dvqn

) ∂2wkq

∂yl∂yp
, (10)

where

∂2wkq

∂yl∂yp
= −

(
2

λ

)2

(wkq )
3







1
3

(
λ
2

)2
(wkq )

−4 ∂wk
q

∂yl

∂wk
q

∂yp

−
(
(Dhf

k
λλλ )qDhqi

Dhqj
+ (Dvf

k
λλλ )qDvqi

Dvqj

) ∂fk
i

∂yl

∂fk
j

∂yp

−
(
(Dhf

k
λλλ )qDhqi

+ (Dvf
k
λλλ )qDvqi

) ∂2fk
i

∂yl∂yp






. (11)

The analysis is then simply as follows:

1) In principle, if we start with a well-defined initial estimate f0
λλλ , the algorithm described by

equations (2)-(4) is designed so thatMk and fk+1
λλλ

are well-defined for allk ≥ 1. Moreover,
Mk is a full-rank matrix and therefore has a stable inverse(Mk)−1.

2) It should be noted all the elements ofMk are differentiable because (4) is a true function of
y. Thus, all the derivatives involved in this analysis are in the true sense of differentiation and
not in the weak sense of distributions.

3) Then, (8) and (9) ensure that∂M
k
mn

∂yp
is well-defined∀ m,n, p = 1, 2, . . . , N , providedΛk is

well-conditioned which is the case as long aswkq < +∞, ∀ q = 1, 2, . . . , N , andk ≥ 1. This
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can be ensured numerically. Therefore, for a fixedp, a well-definedN × 1 vector ∂f
k+1

λλλ

∂yp
is

obtained from (6) as

∂fk+1
λλλ

∂yp
= (Mk)−1(ep − Skpf

k+1
λλλ

), (12)

whereSkp is aN ×N matrix such that(Skp)mn = ∂Mk
mn

∂yp
, ep is aN × 1 column vector whose

elements are all zeros except thepth one which is unity.
4) While (10) and (11) ensure that∂

2Mk
mn

∂yl∂yp
is well-defined∀ m,n, l, p = 1, 2, . . . , N , equations (8)

and (12) ensure that the second and third terms in the L.H.S of(7) are well-defined. Thus, we
see that for a given (l, p) a well-definedN × 1 vector ∂fλλλ

k+1

∂yl∂yp
is obtained from (7) as

∂fλλλ
k+1

∂yl∂yp
= −(Mk)−1

(

Pk
lpf

k+1
λλλ

+ Skp
∂fk+1
λλλ

∂yp
+ Skl

∂fk+1
λλλ

∂yp

)

, (13)

wherePk
lp is aN ×N matrix such that(Pk

lp)mn = ∂2Mk
mn

∂yl∂yp
. �

II. M ONTE-CARLO DIVERGENCE ESTIMATION UNDER A WEAKER HYPOTHESIS

Here, we restate the second part of Theorem 2 which deals withthe Monte-Carlo divergence
estimation under the weaker hypothesis of tempered distributions and then give a formal proof of this
result.

Theorem 2: Let b′ be a zero-mean unit variance i.i.d random vector. Assume that ∃ n0 > 1 and
C0 > 0 such that

‖fλλλ(y)‖ ≤ C0(1 + ‖y‖n0), (14)

that is,fλλλ is tempered. Then

divy{fλλλ(y)} = lim
ε→0

Eb′

{

b′T

(
fλλλ(y + εb′) − fλλλ(y)

ε

)}

(15)

in the weak-sense of tempered distributions.

Proof: Let ψ ∈ S be a rapidly decaying (test) function that is infinitely differentiable. We have
to show that

〈div{fλλλ(y)}, ψ(y)〉 = lim
ε→0

〈

Eb′

{

b′T

(
fλλλ(y + εb′) − fλλλ(y)

ε

)}

, ψ(y)

〉

. (16)

We note that the L.H.S of (16) can be expressed as (from theoryof distributions)

〈div{fλλλ(y)}, ψ(y)〉 = −〈fλλλ(y),∇ψ(y)〉. (17)

The R.H.S of (16) involves the double integration

I1(ε) =

∫

y

dyψ(y)

∫

b′

b′T

(
fλλλ(y + εb′) − fλλλ(y)

ε

)

q(b′)db′, (18)

where q(b′) represents the probability density function ofb′. The order of the integration can be
swapped as soon as (Fubini’s Theorem)

I2(ε) =

∫

y

∫

b′

|ψ(y)|

∣
∣
∣
∣
b′T

(
fλλλ(y + εb′) − fλλλ(y)

ε

)∣
∣
∣
∣
q(b′) db′dy < +∞. (19)

Using Triangle inequality, we boundI2(ε) as

I2(ε) ≤
J(ε) + J(0)

ε
, (20)
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where

J(ε) =

∫

y

∫

b′

|ψ(y)|
∣
∣b′Tfλλλ(y + εb′)

∣
∣ q(b′) db′dy. (21)

Using Cauchy-Schwarz inequality and the fact thatfλλλ is tempered (cf. (14)), we get

J(ε) ≤

∫

y

∫

b′

|ψ(y)| ‖b′‖C0(1 + ‖y + εb′‖n0) q(b′) db′dy. (22)

Using the convexity property of the function(·)n0 for n0 > 1, we get

J(ε) ≤

∫

y

∫

b′

|ψ(y)| ‖b′‖C0(1 + 2n0−1‖y‖n0 + 2n0−1‖εb′‖n0) q(b′) db′dy

= C0

(∫

y

|ψ(y)| dy

)(∫

b′

‖b′‖ q(b′) db′

)

+C02
n0−1

(∫

y

|ψ(y)| ‖y‖n0dy

)(∫

b′

‖b′‖ q(b′) db′

)

+C02
n0−1εn0

(∫

y

|ψ(y)| dy

)(∫

b′

‖b′‖n0+1 q(b′) db′

)

< +∞, (23)

under the hypothesis thatEb′{‖b′‖n0} < +∞, ∀ n0 ≥ 1. The ones involvingψ are also finite
becauseψ is a rapidly decaying function with finite support. Thus,J(ε) < ∞, ∀ ε ≥ 0. Hence, we
interchange the integrals (with appropriate change of variables) to get

I1(ε) =

∫

b′

q(b′)db′

∫

y

ψ(y)b′T

(
fλλλ(y + εb′) − fλλλ(y)

ε

)

dy

=

∫

b′

q(b′)db′

∫

y

b′Tfλλλ(y)

(
ψ(y − εb′) − ψ(y)

ε

)

dy. (24)

Sinceψ is infinitely differentiable, we apply Taylor’s theorem [2]to ψ(y − εb′) and obtain

ψ(y − εb′) − ψ(y)

ε
= −

∫ 1

0
b′T ∇ψ(y − t εb′) dt. (25)

Therefore,

I1(ε) = −

∫

b′

q(b′)db′

∫

y

b′Tfλλλ(y)

∫ 1

0
b′T ∇ψ(y − t εb′) dt dy. (26)

We want to letε tend to 0 in the above expression. This is accomplished by theapplication of
Lebesgue’s dominated convergence theorem. But firstly, we must bound the integrand

z(y,b′, t, ε) = −q(b′) b′Tfλλλ(y) b′T∇ψ(y − t εb′) β0(t), (27)

by an integrable functiong(y,b′, t), where

β0(t) =

{
1, if t ∈ (0, 1)
0, otherwise

. (28)

To do that, we start with|z(y,b′, t, ε)| and apply Cauchy-Schwarz inequality to obtain

0 ≤ |z(y,b′, t, ε)| ≤ q(b′) ‖b′‖2 ‖∇ψ(y − t εb′)‖β0(t)
︸ ︷︷ ︸

def
= g0(y,b′,t,ε)

‖fλλλ(y)‖. (29)

Now, by using convexity of(·)n1 for n1 ≥ 1, we have

1 + ‖y‖n1 = 1 + ‖y − εtb′ + εtb′‖n1 ≤ 1 + 2n1−1‖y − εtb′‖n1 + 2n1−1‖εtb′‖n1 . (30)
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Then, forε ≤ 1,

(1 + ‖y‖n1) g0(y,b
′, t, ε) ≤ (1 + 2n1−1‖y − εtb′‖n1)‖∇ψ(y − t εb′)‖ q(b′) ‖b′‖2β0(t)

+2n1−1‖∇ψ(y − t εb′)‖ q(b′) ‖b′‖n1+2 tn1β0(t)

≤ Cψ,1 q(b
′) ‖b′‖2β0(t) +Cψ,2 q(b

′) ‖b′‖n1+2 tn1β0(t)
︸ ︷︷ ︸

def
= g1(b′,t)

,

whereCψ,1 = supy{(1 + 2n1−1‖y‖n1) ‖∇ψ(y)‖} andCψ,2 = 2n1−1 supy{‖∇ψ(y)‖}.

SinceEb′{‖b′‖n1+2} < +∞, it is clear that
∫

b′

∫

t

g1(b
′, t) db′ dt < +∞. (31)

Therefore, choosingn1 > n0 +N , whereN is the dimension ofy, and∀ ε ≤ 1 we see that

|z(y,b′, t, ε)| ≤ g0(y,b
′, t, ε) ‖fλλλ(y)‖ ≤ g1(b

′, t)
‖fλλλ(y)‖

1 + ‖y‖n1

≤ C0 g1(b
′, t)

1 + ‖y‖n0

1 + ‖y‖n1

︸ ︷︷ ︸

def
= g(y,b′,t)

. (32)

Then, we notice that
∫

y

1 + ‖y‖n0

1 + ‖y‖n1
dy =

∑

k∈ZN

∫

[0, 1)N

1 + ‖y + k‖n0

1 + ‖y + k‖n1
dy =

∫

[0, 1)N

(
∑

k∈ZN

1 + ‖y + k‖n0

1 + ‖y + k‖n1

)

dy (Fubini)

≤
∑

k∈ZN

1 + ‖1 + k‖n0

1 + ‖k‖n1
(1 is a column vector of1s)

≤
∑

k∈ZN

1 + 2n0−1N
n0

2 + 2n0−1‖k‖n0

1 + ‖k‖n1
(using convexity of(·)n0)

≤ (1 + 2n0−1N
n0

2 )










1 +
∑

k∈ZN\{0}

1

‖k‖n1

︸ ︷︷ ︸

<+∞










+ 2n0−1
∑

k∈ZN\{0}

1

‖k‖n1−n0

︸ ︷︷ ︸

<+∞

< +∞, (33)

whenevern1 > n0 +N .
Because of (31) and (33), we find
∫

y

∫

b′

∫

t

g(y,b′, t) dy db′ dt =

(∫

b′

∫

t

g(y,b′, t) db′ dt

)(∫

y

1 + ‖y‖n0

1 + ‖y‖n1
dy

)

< +∞. (34)

Therefore,z qualifies for both Fubini’s and Lebesgue’s Dominant Convergence Theorems (cf. (32)
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and (34)). Hence, applying the limit with appropriate change of integrals, we get the desired result:

lim
ε→0

I1(ε) = − lim
ε→0

∫

b′

q(b′)db′

∫

y

b′Tfλλλ(y)

∫ 1

0
b′T ∇ψ(y − t εb′) dt dy

= −

∫

b′

q(b′)db′

∫

y

b′Tfλλλ(y)

∫ 1

0
lim
ε→0

b′T ∇ψ(y − t εb′) dt dy

= −

∫

y

fT
λλλ (y)

(∫

b′

q(b′)b′b′Tdb′

)

︸ ︷︷ ︸

=I

∇ψ(y) dy

= −〈fλλλ(y),∇ψ(y)〉 = 〈div{fλλλ(y)}, ψ(y)〉 (from (17)) . �
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