Monte-Carlo SURE: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms Supplementary Material

Sathish Ramani*, Student Member, Thierry Blu, Senior Member, and Michael Unser, Fellow

This material supplements some sections of the paper entitled "Monte-Carlo SURE: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms". Here, we elaborate on the solution to the differentiability issue associated with the Monte-Carlo divergence estimation proposed (in Theorem 2) in the paper. Firstly, we verify the validity of the Taylor expansion-based argumentation of Theorem 2 for algorithms like total-variation denoising (TVD). Following that, we give a proof of the second part of Theorem 2 which deals with a weaker hypothesis (using tempered distributions) of the problem.

I. Total-Variation Denoising: Verification of Taylor Expansion-based hypothesis

In the paper, we considered the discrete-domain formulation for total-variation denoising (TVD) where we minimize the cost

$$
\begin{equation*}
\mathcal{J}_{\mathrm{TV}}(\mathbf{u})=\|\mathbf{y}-\mathbf{u}\|^{2}+\lambda \operatorname{TV}\{\mathbf{u}\}, \tag{1}
\end{equation*}
$$

where $\operatorname{TV}\{\mathbf{u}\}=\sum_{k} \sqrt{\left(\mathbf{D}_{h} \mathbf{u}\right)[k]^{2}+\left(\mathbf{D}_{v} \mathbf{u}\right)[k]^{2}}$ is the discrete 2D total variation norm and \mathbf{D}_{h} and \mathbf{D}_{v} are matrices corresponding to the first order finite difference in the horizontal and vertical directions, respectively. We will concentrate only on the bounded-optimization (half-quadratic) algorithm developed in [1]. However, since a typical implementation of TVD will always involve finite differences in place of continuous domain derivatives the analysis can be easily extended to other algorithms including the variant in [1] and those based on Euler-Lagrange equations. We show that the bounded-optimization algorithm for TVD admits first and second order derivatives with respect to the data \mathbf{y} and therefore satisfies the stronger hypothesis (Taylor expansion-based) of Theorem 2.

The TVD algorithm is described by the following recursive equation [1]: the signal estimate at iteration $k+1$ denoted by the $N \times 1$ vector $\mathbf{f}_{\lambda}^{k+1}$ is obtained by solving the linear system

$$
\begin{equation*}
\mathbf{M}^{k} \mathbf{f}_{\lambda}^{k+1}=\mathbf{y} \tag{2}
\end{equation*}
$$

where M^{k} is the $N \times N$ system matrix at iteration k given by

$$
\begin{equation*}
\mathbf{M}^{k}=\mathbf{I}+\mathbf{D}_{h}^{\mathrm{T}} \Lambda^{k} \mathbf{D}_{h}+\mathbf{D}_{v}^{\mathrm{T}} \Lambda^{k} \mathbf{D}_{v}, \tag{3}
\end{equation*}
$$

and $\Lambda^{k}=\operatorname{diag}\left\{w_{i}^{k} ; i=1,2, \ldots, N\right\}$, with

$$
\begin{equation*}
w_{i}^{k}=\frac{\lambda}{2 \sqrt{\left(\mathbf{D}_{h} \mathbf{f}_{\lambda}^{k}\right)_{i}^{2}+\left(\mathbf{D}_{v} \mathbf{f}_{\lambda}^{k}\right)_{i}^{2}+\kappa}}, \tag{4}
\end{equation*}
$$

where $\left(\mathbf{D}_{*} \mathbf{f}_{\lambda}^{k}\right)_{i}$ is the $i^{\text {th }}$ element of the vector $\mathbf{D}_{*} \mathbf{f}_{\lambda}^{k}$ and $\kappa>0$ is a small constant that prevents the denominator of w_{i}^{k} going to zero (or else the algorithm \mathbf{f}_{λ} itself may become numerically unstable).

[^0]Differentiating (2) with respect to \mathbf{y}, we obtain

$$
\begin{equation*}
\frac{\partial \mathbf{M}^{k}}{\partial \mathbf{y}} \mathbf{f}_{\lambda}^{k+1}+\mathbf{M}^{k} \underbrace{\frac{\partial \mathbf{f}_{\lambda}^{k+1}}{\partial \mathbf{y}}}_{\mathbf{J}_{\boldsymbol{f}_{\lambda}}^{k+1}}=\mathbf{I} \tag{5}
\end{equation*}
$$

where $\mathbf{J}_{\mathbf{f}_{\lambda}}^{k+1}$ is the Jacobian matrix of $\mathbf{f}_{\lambda}^{k+1}$ at iteration $k+1$. If $M_{m n}^{k}$ represents the $m n^{\text {th }}$ element of \mathbf{M}^{k} and y_{m} and f_{m}^{k} represent the $m^{\text {th }}$ elements of \mathbf{y} and \mathbf{f}_{λ}^{k}, respectively, then using Einstein's summation notation (repeated indices will be summed over unless they appear on both sides of an equation) (5) can be written as

$$
\begin{equation*}
\frac{\partial M_{m n}^{k}}{\partial y_{p}} \mathrm{f}_{n}^{k+1}+M_{m n}^{k} \frac{\partial \mathrm{f}_{n}^{k+1}}{\partial y_{p}}=\delta_{m p}, \tag{6}
\end{equation*}
$$

where, for example, the index n is summer over in both the terms on the L.H.S of the above equation.
Differentiating (6) a second time, we obtain

$$
\begin{equation*}
\frac{\partial^{2} M_{m n}^{k}}{\partial y_{l} \partial y_{p}} \mathrm{f}_{n}^{k+1}+\frac{\partial M_{m n}^{k}}{\partial y_{p}} \frac{\partial \mathrm{f}_{n}^{k+1}}{\partial y_{l}}+\frac{\partial M_{m n}^{k}}{\partial y_{l}} \frac{\partial \mathrm{f}_{n}^{k+1}}{\partial y_{p}}+M_{m n}^{k} \frac{\partial \mathrm{f}_{n}^{k+1}}{\partial y_{l} \partial y_{p}}=0 . \tag{7}
\end{equation*}
$$

It is clear that the $N \times N \times N$ tensor $\mathbf{r}=\left\{\frac{f_{n}^{k+1}}{\partial y_{l} \partial y_{p}}\right\}_{n, l, p=1}^{N}$ is the desired second derivative in the Taylor expansion in Theorem 2. We will show that for a given (l, p), all the terms in (7) are well-defined, so that the $N \times 1$ vector $\mathbf{r}_{l p}=\frac{\partial \mathbf{f}^{k+1}}{\partial y_{l} \partial y_{p}}$ can be obtained by solving a linear system.

Firstly, we analyze $\frac{\partial M_{m n}^{k}}{\partial y_{p}}$ which is given by

$$
\begin{equation*}
\frac{\partial M_{m n}^{k}}{\partial y_{p}}=\left(D_{h_{q m}} D_{h_{q n}}+D_{v_{q m}} D_{v_{q n}}\right) \frac{\partial w_{q}^{k}}{\partial y_{p}}, \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{\partial w_{q}^{k}}{\partial y_{p}}=-\left(\frac{2}{\lambda}\right)^{2}\left(w_{q}^{k}\right)^{3}\left(\left(\mathbf{D}_{h} \mathbf{f}_{\lambda}^{k}\right)_{q} D_{h_{q i}}+\left(\mathbf{D}_{v} \mathbf{f}_{\lambda}^{k}\right)_{q} D_{v_{q i}}\right) \frac{\partial f_{i}^{k}}{\partial y_{p}} \tag{9}
\end{equation*}
$$

where the index q is not summed over on the R.H.S of the above equation.
Similarly,

$$
\begin{equation*}
\frac{\partial^{2} M_{m n}^{k}}{\partial y_{l} \partial y_{p}}=\left(D_{h_{q m}} D_{h_{q n}}+D_{v_{q m}} D_{v_{q n}}\right) \frac{\partial^{2} w_{q}^{k}}{\partial y_{l} \partial y_{p}}, \tag{10}
\end{equation*}
$$

where

$$
\frac{\partial^{2} w_{q}^{k}}{\partial y_{l} \partial y_{p}}=-\left(\frac{2}{\lambda}\right)^{2}\left(w_{q}^{k}\right)^{3}\left[\begin{array}{l}
\frac{1}{3}\left(\frac{\lambda}{2}\right)^{2}\left(w_{q}^{k}\right)^{-4} \frac{\partial w_{q}^{k}}{\partial y_{l}} \frac{\partial w_{q}^{k}}{y_{p}} \tag{11}\\
-\left(\left(\mathbf{D}_{h} f_{\lambda}^{k}\right)_{q} D_{h_{q i}} D_{h_{q j}}+\left(\mathbf{D}_{v} \mathbf{f}_{\lambda}^{k}\right)_{q} D_{v_{q i}} D_{v_{q j}}\right) \frac{\partial f_{i}^{k}}{\partial y_{i} f_{j}^{k}} \\
-\left(\left(\mathbf{D}_{h} f_{\lambda}^{k}\right)_{q} D_{h_{q i}}+\left(\mathbf{D}_{v} \mathbf{f}_{\lambda}^{k}\right)_{q} D_{v_{q i}}\right) \frac{\partial^{2} \mathbf{f}_{i}^{k}}{\partial y_{l} \partial y_{p}}
\end{array}\right] .
$$

The analysis is then simply as follows:

1) In principle, if we start with a well-defined initial estimate f_{λ}^{0}, the algorithm described by equations (2)-(4) is designed so that \mathbf{M}^{k} and $\mathbf{f}_{\lambda}^{k+1}$ are well-defined for all $k \geq 1$. Moreover, \mathbf{M}^{k} is a full-rank matrix and therefore has a stable inverse $\left(\mathbf{M}^{k}\right)^{-1}$.
2) It should be noted all the elements of \mathbf{M}^{k} are differentiable because (4) is a true function of y . Thus, all the derivatives involved in this analysis are in the true sense of differentiation and not in the weak sense of distributions.
3) Then, (8) and (9) ensure that $\frac{\partial M_{m n}^{k}}{\partial y_{p}}$ is well-defined $\forall m, n, p=1,2, \ldots, N$, provided Λ^{k} is well-conditioned which is the case as long as $w_{q}^{k}<+\infty, \forall q=1,2, \ldots, N$, and $k \geq 1$. This
can be ensured numerically. Therefore, for a fixed p, a well-defined $N \times 1$ vector $\frac{\partial f_{1}^{k+1}}{\partial y_{p}}$ is obtained from (6) as

$$
\begin{equation*}
\frac{\partial \mathbf{f}_{\lambda}^{k+1}}{\partial y_{p}}=\left(\mathbf{M}^{k}\right)^{-1}\left(\mathbf{e}_{p}-\mathbf{S}_{p}^{k} \mathbf{f}_{\lambda}^{k+1}\right) \tag{12}
\end{equation*}
$$

where \mathbf{S}_{p}^{k} is a $N \times N$ matrix such that $\left(\mathbf{S}_{p}^{k}\right)_{m n}=\frac{\partial M_{m n}^{k}}{\partial y_{p}}, \mathbf{e}_{p}$ is a $N \times 1$ column vector whose elements are all zeros except the $p^{t h}$ one which is unity.
4) While (10) and (11) ensure that $\frac{\partial^{2} M_{n n}^{k}}{\partial y_{l} \partial y_{p}}$ is well-defined $\forall m, n, l, p=1,2, \ldots, N$, equations (8) and (12) ensure that the second and third terms in the L.H.S of (7) are well-defined. Thus, we see that for a given (l, p) a well-defined $N \times 1$ vector $\frac{\partial \mathfrak{f}_{\lambda^{k+1}}}{\partial y_{l} \partial y_{p}}$ is obtained from (7) as

$$
\begin{equation*}
\frac{\partial \mathbf{f}_{\lambda}^{k+1}}{\partial y_{l} \partial y_{p}}=-\left(\mathbf{M}^{k}\right)^{-1}\left(\mathbf{P}_{l p}^{k} \mathbf{f}_{\lambda}^{k+1}+\mathbf{S}_{p}^{k} \frac{\partial \mathbf{f}_{\lambda}^{k+1}}{\partial y_{p}}+\mathbf{S}_{l}^{k} \frac{\partial \mathbf{f}_{\lambda}^{k+1}}{\partial y_{p}}\right) \tag{13}
\end{equation*}
$$

where $\mathbf{P}_{l p}^{k}$ is a $N \times N$ matrix such that $\left(\mathbf{P}_{l p}^{k}\right)_{m n}=\frac{\partial^{2} M_{m n}^{k}}{\partial y_{l} \partial y_{p}}$.

II. Monte-Carlo Divergence Estimation under a Weaker Hypothesis

Here, we restate the second part of Theorem 2 which deals with the Monte-Carlo divergence estimation under the weaker hypothesis of tempered distributions and then give a formal proof of this result.

Theorem 2: Let \mathbf{b}^{\prime} be a zero-mean unit variance i.i.d random vector. Assume that $\exists n_{0}>1$ and $C_{0}>0$ such that

$$
\begin{equation*}
\left\|\mathbf{f}_{\boldsymbol{\lambda}}(\mathbf{y})\right\| \leq C_{0}\left(1+\|\mathbf{y}\|^{n_{0}}\right) \tag{14}
\end{equation*}
$$

that is, f_{λ} is tempered. Then

$$
\begin{equation*}
\operatorname{div}_{\mathbf{y}}\left\{\mathbf{f}_{\lambda}(\mathbf{y})\right\}=\lim _{\varepsilon \rightarrow 0} E_{\mathbf{b}^{\prime}}\left\{\mathbf{b}^{\prime \mathrm{T}}\left(\frac{\mathbf{f}_{\lambda}\left(\mathbf{y}+\varepsilon \mathbf{b}^{\prime}\right)-\mathbf{f}_{\lambda}(\mathbf{y})}{\varepsilon}\right)\right\} \tag{15}
\end{equation*}
$$

in the weak-sense of tempered distributions.
Proof: Let $\psi \in \mathcal{S}$ be a rapidly decaying (test) function that is infinitely differentiable. We have to show that

$$
\begin{equation*}
\left\langle\operatorname{div}\left\{\mathbf{f}_{\boldsymbol{\lambda}}(\mathbf{y})\right\}, \psi(\mathbf{y})\right\rangle=\lim _{\varepsilon \rightarrow 0}\left\langle E_{\mathbf{b}^{\prime}}\left\{\mathbf{b}^{\prime \mathrm{T}}\left(\frac{\mathbf{f}_{\boldsymbol{\lambda}}\left(\mathbf{y}+\varepsilon \mathbf{b}^{\prime}\right)-\mathbf{f}_{\boldsymbol{\lambda}}(\mathbf{y})}{\varepsilon}\right)\right\}, \psi(\mathbf{y})\right\rangle . \tag{16}
\end{equation*}
$$

We note that the L.H.S of (16) can be expressed as (from theory of distributions)

$$
\begin{equation*}
\left\langle\operatorname{div}\left\{\mathbf{f}_{\lambda}(\mathbf{y})\right\}, \psi(\mathbf{y})\right\rangle=-\left\langle\mathbf{f}_{\boldsymbol{\lambda}}(\mathbf{y}), \nabla \psi(\mathbf{y})\right\rangle . \tag{17}
\end{equation*}
$$

The R.H.S of (16) involves the double integration

$$
\begin{equation*}
I_{1}(\varepsilon)=\int_{\mathbf{y}} d \mathbf{y} \psi(\mathbf{y}) \int_{\mathbf{b}^{\prime}} \mathbf{b}^{\prime \mathrm{T}}\left(\frac{\mathbf{f}_{\lambda}\left(\mathbf{y}+\varepsilon \mathbf{b}^{\prime}\right)-\mathbf{f}_{\boldsymbol{\lambda}}(\mathbf{y})}{\varepsilon}\right) q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime} \tag{18}
\end{equation*}
$$

where $q\left(\mathbf{b}^{\prime}\right)$ represents the probability density function of \mathbf{b}^{\prime}. The order of the integration can be swapped as soon as (Fubini's Theorem)

$$
\begin{equation*}
\left.I_{2}(\varepsilon)=\int_{\mathbf{y}} \int_{\mathbf{b}^{\prime}}|\psi(\mathbf{y})| \mathbf{b}^{\prime \mathrm{T}}\left(\frac{\mathbf{f}_{\lambda}\left(\mathbf{y}+\varepsilon \mathbf{b}^{\prime}\right)-\mathbf{f}_{\lambda}(\mathbf{y})}{\varepsilon}\right) \right\rvert\, q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime} d \mathbf{y}<+\infty . \tag{19}
\end{equation*}
$$

Using Triangle inequality, we bound $I_{2}(\varepsilon)$ as

$$
\begin{equation*}
I_{2}(\varepsilon) \leq \frac{J(\varepsilon)+J(0)}{\varepsilon} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
J(\varepsilon)=\int_{\mathbf{y}} \int_{\mathbf{b}^{\prime}}|\psi(\mathbf{y})|\left|\mathbf{b}^{\prime T} \mathbf{f}_{\lambda}\left(\mathbf{y}+\varepsilon \mathbf{b}^{\prime}\right)\right| q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime} d \mathbf{y} . \tag{21}
\end{equation*}
$$

Using Cauchy-Schwarz inequality and the fact that f_{λ} is tempered (cf. (14)), we get

$$
\begin{equation*}
J(\varepsilon) \leq \int_{\mathbf{y}} \int_{\mathbf{b}^{\prime}}|\psi(\mathbf{y})|\left\|\mathbf{b}^{\prime}\right\| C_{0}\left(1+\left\|\mathbf{y}+\varepsilon \mathbf{b}^{\prime}\right\|^{n_{0}}\right) q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime} d \mathbf{y} . \tag{22}
\end{equation*}
$$

Using the convexity property of the function $(\cdot)^{n_{0}}$ for $n_{0}>1$, we get

$$
\begin{align*}
J(\varepsilon) \leq & \int_{\mathbf{y}} \int_{\mathbf{b}^{\prime}}|\psi(\mathbf{y})|\left\|\mathbf{b}^{\prime}\right\| C_{0}\left(1+2^{n_{0}-1}\|\mathbf{y}\|^{n_{0}}+2^{n_{0}-1}\left\|\varepsilon \mathbf{b}^{\prime}\right\|^{n_{0}}\right) q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime} d \mathbf{y} \\
= & C_{0}\left(\int_{\mathbf{y}}|\psi(\mathbf{y})| d \mathbf{y}\right)\left(\int_{\mathbf{b}^{\prime}}\left\|\mathbf{b}^{\prime}\right\| q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime}\right) \\
& +C_{0} 2^{n_{0}-1}\left(\int_{\mathbf{y}}|\psi(\mathbf{y})|\|\mathbf{y}\|^{n_{0}} d \mathbf{y}\right)\left(\int_{\mathbf{b}^{\prime}}\left\|\mathbf{b}^{\prime}\right\| q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime}\right) \\
& +C_{0} 2^{n_{0}-1} \varepsilon^{n_{0}}\left(\int_{\mathbf{y}}|\psi(\mathbf{y})| d \mathbf{y}\right)\left(\int_{\mathbf{b}^{\prime}}\left\|\mathbf{b}^{\prime}\right\|^{n_{0}+1} q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime}\right) \\
< & +\infty \tag{23}
\end{align*}
$$

under the hypothesis that $E_{\mathbf{b}^{\prime}}\left\{\left\|\mathbf{b}^{\prime}\right\|^{n_{0}}\right\}<+\infty, \forall n_{0} \geq 1$. The ones involving ψ are also finite because ψ is a rapidly decaying function with finite support. Thus, $J(\varepsilon)<\infty, \forall \varepsilon \geq 0$. Hence, we interchange the integrals (with appropriate change of variables) to get

$$
\begin{align*}
I_{1}(\varepsilon) & =\int_{\mathbf{b}^{\prime}} q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime} \int_{\mathbf{y}} \psi(\mathbf{y}) \mathbf{b}^{\prime T}\left(\frac{\mathbf{f}_{\lambda}\left(\mathbf{y}+\varepsilon \mathbf{b}^{\prime}\right)-\mathbf{f}_{\lambda}(\mathbf{y})}{\varepsilon}\right) d \mathbf{y} \\
& =\int_{\mathbf{b}^{\prime}} q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime} \int_{\mathbf{y}} \mathbf{b}^{\prime T} \mathbf{f}_{\lambda}(\mathbf{y})\left(\frac{\psi\left(\mathbf{y}-\varepsilon \mathbf{b}^{\prime}\right)-\psi(\mathbf{y})}{\varepsilon}\right) d \mathbf{y} \tag{24}
\end{align*}
$$

Since ψ is infinitely differentiable, we apply Taylor's theorem [2] to $\psi\left(\mathbf{y}-\varepsilon \mathbf{b}^{\prime}\right)$ and obtain

$$
\begin{equation*}
\frac{\psi\left(\mathbf{y}-\varepsilon \mathbf{b}^{\prime}\right)-\psi(\mathbf{y})}{\varepsilon}=-\int_{0}^{1} \mathbf{b}^{\prime \mathrm{T}} \nabla \psi\left(\mathbf{y}-t \varepsilon \mathbf{b}^{\prime}\right) d t . \tag{25}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
I_{1}(\varepsilon)=-\int_{\mathbf{b}^{\prime}} q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime} \int_{\mathbf{y}} \mathbf{b}^{\prime \mathrm{T}} \mathbf{f}_{\lambda}(\mathbf{y}) \int_{0}^{1} \mathbf{b}^{\prime \mathrm{T}} \nabla \psi\left(\mathbf{y}-t \varepsilon \mathbf{b}^{\prime}\right) d t d \mathbf{y} . \tag{26}
\end{equation*}
$$

We want to let ε tend to 0 in the above expression. This is accomplished by the application of Lebesgue's dominated convergence theorem. But firstly, we must bound the integrand

$$
\begin{equation*}
z\left(\mathbf{y}, \mathbf{b}^{\prime}, t, \varepsilon\right)=-q\left(\mathbf{b}^{\prime}\right) \mathbf{b}^{\prime \mathrm{T}} \mathbf{f}_{\lambda}(\mathbf{y}) \mathbf{b}^{\prime \mathrm{T}} \nabla \psi\left(\mathbf{y}-t \varepsilon \mathbf{b}^{\prime}\right) \beta^{0}(t) \tag{27}
\end{equation*}
$$

by an integrable function $g\left(\mathbf{y}, \mathbf{b}^{\prime}, t\right)$, where

$$
\beta^{0}(t)=\left\{\begin{array}{l}
1, \text { if } t \in(0,1) \tag{28}\\
0, \text { otherwise }
\end{array}\right.
$$

To do that, we start with $\left|z\left(\mathbf{y}, \mathbf{b}^{\prime}, t, \varepsilon\right)\right|$ and apply Cauchy-Schwarz inequality to obtain

$$
\begin{equation*}
0 \leq\left|z\left(\mathbf{y}, \mathbf{b}^{\prime}, t, \varepsilon\right)\right| \leq \underbrace{q\left(\mathbf{b}^{\prime}\right)\left\|\mathbf{b}^{\prime}\right\|^{2}\left\|\nabla \psi\left(\mathbf{y}-t \varepsilon \mathbf{b}^{\prime}\right)\right\| \beta^{0}(t)}_{\stackrel{\text { def }}{=} g_{0}\left(\mathbf{y}, \mathbf{b}^{\prime}, t, \varepsilon\right)}\left\|\mathbf{f}_{\lambda}(\mathbf{y})\right\| . \tag{29}
\end{equation*}
$$

Now, by using convexity of $(\cdot)^{n_{1}}$ for $n_{1} \geq 1$, we have

$$
\begin{equation*}
1+\|\mathbf{y}\|^{n_{1}}=1+\left\|\mathbf{y}-\varepsilon t \mathbf{b}^{\prime}+\varepsilon t \mathbf{b}^{\prime}\right\|^{n_{1}} \leq 1+2^{n_{1}-1}\left\|\mathbf{y}-\varepsilon t \mathbf{b}^{\prime}\right\|^{n_{1}}+2^{n_{1}-1}\left\|\varepsilon t \mathbf{b}^{\prime}\right\|^{n_{1}} \tag{30}
\end{equation*}
$$

Then, for $\varepsilon \leq 1$,

$$
\begin{aligned}
\left(1+\|\mathbf{y}\|^{n_{1}}\right) g_{0}\left(\mathbf{y}, \mathbf{b}^{\prime}, t, \varepsilon\right) \leq & \left(1+2^{n_{1}-1}\left\|\mathbf{y}-\varepsilon t \mathbf{b}^{\prime}\right\|^{n_{1}}\right)\left\|\nabla \psi\left(\mathbf{y}-t \varepsilon \mathbf{b}^{\prime}\right)\right\| q\left(\mathbf{b}^{\prime}\right)\left\|\mathbf{b}^{\prime}\right\|^{2} \beta^{0}(t) \\
& +2^{n_{1}-1}\left\|\nabla \psi\left(\mathbf{y}-t \varepsilon \mathbf{b}^{\prime}\right)\right\| q\left(\mathbf{b}^{\prime}\right)\left\|\mathbf{b}^{\prime}\right\|^{n_{1}+2} t^{n_{1}} \beta^{0}(t) \\
\leq & \underbrace{C_{\psi, 1} q\left(\mathbf{b}^{\prime}\right)\left\|\mathbf{b}^{\prime}\right\|^{2} \beta^{0}(t)+C_{\psi, 2} q\left(\mathbf{b}^{\prime}\right)\left\|\mathbf{b}^{\prime}\right\|^{n_{1}+2} t^{n_{1}} \beta^{0}(t),}_{\stackrel{\text { def }}{=} g_{1}\left(\mathbf{b}^{\prime}, t\right)},
\end{aligned}
$$

where $C_{\psi, 1}=\sup _{\mathbf{y}}\left\{\left(1+2^{n_{1}-1}\|\mathbf{y}\|^{n_{1}}\right)\|\nabla \psi(\mathbf{y})\|\right\}$ and $C_{\psi, 2}=2^{n_{1}-1} \sup _{\mathbf{y}}\{\|\nabla \psi(\mathbf{y})\|\}$.
Since $E_{\mathbf{b}^{\prime}}\left\{\left\|\mathbf{b}^{\prime}\right\|^{n_{1}+2}\right\}<+\infty$, it is clear that

$$
\begin{equation*}
\int_{\mathbf{b}^{\prime}} \int_{t} g_{1}\left(\mathbf{b}^{\prime}, t\right) d \mathbf{b}^{\prime} d t<+\infty . \tag{31}
\end{equation*}
$$

Therefore, choosing $n_{1}>n_{0}+N$, where N is the dimension of \mathbf{y}, and $\forall \varepsilon \leq 1$ we see that

$$
\begin{align*}
\left|z\left(\mathbf{y}, \mathbf{b}^{\prime}, t, \varepsilon\right)\right| \leq g_{0}\left(\mathbf{y}, \mathbf{b}^{\prime}, t, \varepsilon\right)\left\|\mathbf{f}_{\lambda}(\mathbf{y})\right\| & \leq g_{1}\left(\mathbf{b}^{\prime}, t\right) \frac{\left\|\mathbf{f}_{\lambda}(\mathbf{y})\right\|}{1+\|\mathbf{y}\|^{n_{1}}} \\
& \leq \underbrace{C_{0} g_{1}\left(\mathbf{b}^{\prime}, t\right) \frac{1+\|\mathbf{y}\|^{n_{0}}}{1+\|\mathbf{y}\|^{n_{1}}}}_{\stackrel{\text { def }}{=} g\left(\mathbf{y}, \mathbf{b}^{\prime}, t\right)} . \tag{32}
\end{align*}
$$

Then, we notice that

$$
\begin{align*}
\int_{\mathbf{y}} \frac{1+\|\mathbf{y}\|^{n_{0}}}{1+\|\mathbf{y}\|^{n_{1}}} d \mathbf{y} & =\sum_{\mathbf{k} \in \mathbb{Z}^{N}} \int_{[0,1)^{N}} \frac{1+\|\mathbf{y}+\mathbf{k}\|^{n_{0}}}{1+\|\mathbf{y}+\mathbf{k}\|^{n_{1}}} d \mathbf{y}=\int_{[0,1)^{N}}\left(\sum_{\mathbf{k} \in \mathbb{Z}^{N}} \frac{1+\|\mathbf{y}+\mathbf{k}\|^{n_{0}}}{1+\|\mathbf{y}+\mathbf{k}\|^{n_{1}}}\right) d \mathbf{y} \\
& \leq \sum_{\mathbf{k} \in \mathbb{Z}^{N}} \frac{1+\|\mathbf{1}+\mathbf{k}\|^{n_{0}}}{1+\|\mathbf{k}\|^{n_{1}}}(\mathbf{1} \text { is a column vector of 1s) } \\
& \left.\leq \sum_{\mathbf{k} \in \mathbb{Z}^{N}} \frac{1+2^{n_{0}-1} N^{\frac{n_{0}}{2}}+2^{n_{0}-1}\|\mathbf{k}\|^{n_{0}}}{1+\|\mathbf{k}\|^{n_{1}}} \text { (using convexity of }(\cdot)^{n_{0}}\right) \\
\leq & \left(1+2^{n_{0}-1} N^{\frac{n_{0}}{2}}\right)(1+\underbrace{\sum_{\mathbf{k} \in \mathbb{Z}^{N} \backslash\{\mathbf{0}\}} \frac{1}{\|\mathbf{k}\|^{n_{1}}}}_{<+\infty})+2^{n_{0}-1} \underbrace{}_{\sum_{<+\infty}^{\sum_{\mathbb{Z}^{N} \backslash\{\mathbf{0}\}}} \frac{1}{\|\mathbf{k}\|^{n_{1}-n_{0}}}} \\
< & +\infty, \tag{33}
\end{align*}
$$

whenever $n_{1}>n_{0}+N$.
Because of (31) and (33), we find

$$
\begin{equation*}
\int_{\mathbf{y}} \int_{\mathbf{b}^{\prime}} \int_{t} g\left(\mathbf{y}, \mathbf{b}^{\prime}, t\right) d \mathbf{y} d \mathbf{b}^{\prime} d t=\left(\int_{\mathbf{b}^{\prime}} \int_{t} g\left(\mathbf{y}, \mathbf{b}^{\prime}, t\right) d \mathbf{b}^{\prime} d t\right)\left(\int_{\mathbf{y}} \frac{1+\|\mathbf{y}\|^{n_{0}}}{1+\|\mathbf{y}\|^{n_{1}}} d \mathbf{y}\right)<+\infty . \tag{34}
\end{equation*}
$$

Therefore, z qualifies for both Fubini's and Lebesgue's Dominant Convergence Theorems (cf. (32)
and (34)). Hence, applying the limit with appropriate change of integrals, we get the desired result:

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} I_{1}(\varepsilon) & =-\lim _{\varepsilon \rightarrow 0} \int_{\mathbf{b}^{\prime}} q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime} \int_{\mathbf{y}} \mathbf{b}^{\prime \mathrm{T}} \mathbf{f}_{\boldsymbol{\lambda}}(\mathbf{y}) \int_{0}^{1} \mathbf{b}^{\prime \mathrm{T}} \nabla \psi\left(\mathbf{y}-t \varepsilon \mathbf{b}^{\prime}\right) d t d \mathbf{y} \\
& =-\int_{\mathbf{b}^{\prime}} q\left(\mathbf{b}^{\prime}\right) d \mathbf{b}^{\prime} \int_{\mathbf{y}} \mathbf{b}^{\prime \mathrm{T}} \mathbf{f}_{\boldsymbol{\lambda}}(\mathbf{y}) \int_{0}^{1} \lim _{\varepsilon \rightarrow 0} \mathbf{b}^{\prime \mathrm{T}} \nabla \psi\left(\mathbf{y}-t \varepsilon \mathbf{b}^{\prime}\right) d t d \mathbf{y} \\
& =-\int_{\mathbf{y}} \mathbf{f}_{\lambda}^{\mathrm{T}}(\mathbf{y}) \underbrace{\left(\int_{\mathbf{b}^{\prime}} q\left(\mathbf{b}^{\prime}\right) \mathbf{b}^{\prime} \mathbf{b}^{\prime \mathrm{T}} d \mathbf{b}^{\prime}\right)}_{=I} \nabla \psi(\mathbf{y}) d \mathbf{y} \\
& =-\left\langle\mathbf{f}_{\lambda}(\mathbf{y}), \nabla \psi(\mathbf{y})\right\rangle=\left\langle\operatorname{div}\left\{\mathbf{f}_{\lambda}(\mathbf{y})\right\}, \psi(\mathbf{y})\right\rangle \quad(\text { from (17)) } .
\end{aligned}
$$

References

[1] M. A. T. Figueiredo, J. B. Dias, J. P. Oliveira, and R. D. Nowak, "On total variation denoising: A new MajorizationMinimization algorithm and an experimental comparison with wavalet denoising," Proceedings of IEEE International Conference on Image Processing (ICIP 2006), Atlanta, GA, USA, pp. 2633-2636, October 2006.
[2] J. T. Day, "On the convergence of Taylor series for functions of n variables", Mathematics Magazine, vol. 40, No. 5, pp. 258-260, 1967.

[^0]: Email: sathish.ramani@epfl.ch, thierry.blu@m4x.org, michael.unser@epfl.ch.

