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This material supplements some sections of the papereshtitionte-Carlo SURE: A Black-Box
Optimization of Regularization Parameters for General ddng Algorithms”. Here, we elaborate
on the solution to the differentiability issue associatathvthe Monte-Carlo divergence estimation
proposed (in Theorem 2) in the paper. Firstly, we verify tladidity of the Taylor expansion-based
argumentation of Theorem 2 for algorithms like total-vaoa denoising (TVD). Following that, we
give a proof of the second part of Theorem 2 which deals witheaker hypothesis (using tempered
distributions) of the problem.

. TOTAL-VARIATION DENOISING. VERIFICATION OF TAYLOR EXPANSION-BASED HYPOTHESIS

In the paper, we considered the discrete-domain formuldo total-variation denoising (TVD)
where we minimize the cost

Jrv(u) = [y —ul* + ATV {u}, (1)

where TV{u} = >, /(Dyu)[k]2 + (D,u)[k]? is the discrete 2D total variation norm addj,
and D,, are matrices corresponding to the first order finite diffeeem the horizontal and vertical
directions, respectively. We will concentrate only on tlwitded-optimization (half-quadratic) algo-
rithm developed in [1]. However, since a typical impleméiota of TVD will always involve finite
differences in place of continuous domain derivatives thalysis can be easily extended to other
algorithms including the variant in [1] and those based ofeEuagrange equations. We show that
the bounded-optimization algorithm for TVD admits first asetond order derivatives with respect
to the datay and therefore satisfies the stronger hypothesis (Tayloaresipn-based) of Theorem 2.
The TVD algorithm is described by the following recursiveuation [1]: the signal estimate at
iteration k + 1 denoted by theV x 1 vectorfj\“rl is obtained by solving the linear system

M =y, 2
whereMP” is the N x N system matrix at iteratiok given by
MF =1+ DfA*D;, + DIAFD,, (3)
and AF = diag{wF; i =1,2,..., N}, with
A
wy = ; 4)

2,/ (DAtf)? + (Du)? + 5

where(D*ff)i is theit® element of the vectoD*f,’\‘f andx > 0 is a small constant that prevents the
denominator ofw¥ going to zero (or else the algorithfy itself may become numerically unstable).
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Differentiating (2) with respect ty, we obtain

oMF of !
Tl M2 5

WhereJ’fJrl is the Jacobian matrix cﬂk“ at iterationk + 1. If MF = represents thewn'™ element
of MF and ym andf¥ represent thenth elements ofy and f}, respectlvely, then using Einstein’s
summation notation (repeated indices will be summed ovégssrthey appear on both sides of an
equation) (5) can be written as

aMk afk+1
mn fk—i—l Mk — 5m 6
ayp mn a P ( )

where, for example, the indexis summer over in both the terms on the L.H.S of the above @quat
Differentiating (6) a second time, we obtain

Mk M i1 OME okl N oMk~ pfktl p okl
0y 0y, " dyp Oy dyr  Oyp " Oy 0y

(7)

It is clear that theV x N x N tensorr = {gjfg;

expansion in Theorem 2. We will show that for e_giv@np), all the terms in (7) are well-defined,

so that the/V x 1 vectorr;, = gffl—gzl can be obtained by solving a linear system.

Firstly, we analyze% which is given by

N
} - is the desired second derivative in the Taylor
n,l,p=

oMk owk
= Dh mDh . T qumqun _q7 (8)
ayp ( q q ) ayp
with
owk 2\ 2 otk
q k\3 k k i
N _(Z D) Dy, + (D f Dv.>—, 9
ayp <)\> (wq) (( h A)q hql +( }\)q qi ayp ( )
where the index is not summed over on the R.H.S of the above equation.
Similarly,
o*Mk O%wk
Dy Dy + D, D, 1. 10
ayzayp = (Dt D, w Do) y10yp (10)
where
1 (A2, ky—4 Qwg Owg
2wk 9 2 3 (5) (wq) ! Ay Oy, o
_ k\3 ok off
uy =~ () 00| ~ (DD D+ DAL D) B | D
o2tk
— ((Dwf})g D, + (Dofy)gDy,,) 9.9,

The analysis is then simply as follows:

1) In principle, if we start with a well-defined initial estate fﬁ‘), the algorithm described by
equations (2)-(4) is designed so tiel* and ff“ are well-defined for alk > 1. Moreover,
MF is a full-rank matrix and therefore has a stable inveis&)~!

2) It should be noted all the elements Bf* are differentiable because (4) is a true function of
y. Thus, all the derivatives involved in this analysis arehia true sense of differentiation and
not in the weak sense of distributions.

3) Then, (8) and (9) ensure thgt@ is well-defined¥ m,n,p = 1,2,..., N, providedA* is

well-conditioned which is the case as Iongzaf; < +4oo,Vqg=1,2,. N, andk > 1. This



can be ensured numerically. Therefore, for a fixeda well-definedN x 1 vector agm is
obtained from (6) as

8ff+1 ky—1 kek+1

Dy = (M") (ep _Spf)\ ); (12)

- . k -
whereS?) is a N x N matrix such thatSk),,, = agim", e, is a N x 1 column vector whose
p

elements are all zeros except tﬁé one which is unity.
4) While (10) and (11) ensure th b Z/m is well-definedv m,n,l,p =1,2,..., N, equations (8)
and (12) ensure that the second and third terms in the L H(S)Qire WeII deflned Thus, we

see that for a given/ (p) a well-definedN x 1 vector%a is obtained from (7) as

afkk+1 o1 . 8fk+1 8fk+1
=-(M | R e L s , 13
aylayp ( ) a l ayp ( )
whereP;} is a N x N matrix such tha{P}, ), = %y%z: n

II. MONTE-CARLO DIVERGENCE ESTIMATION UNDER A WEAKER HYPOTHESIS

Here, we restate the second part of Theorem 2 which deals thithMonte-Carlo divergence
estimation under the weaker hypothesis of tempered disiwitts and then give a formal proof of this
result.

Theorem 2: Let b’ be a zero-mean unit variance i.i.d random vector. Assumezha > 1 and
Cp > 0 such that

I < Co(1 +[ly[I™), (14)

that is,f) is tempered. Then

divy {£(y)) = lim By {b’T <f*(y Teb) - f*“”) } (15)

3

in the weak-sense of tempered distributions.

Proof: Lety € S be a rapidly decaying (test) function that is infinitely di#ntiable. We have
to show that

(@iv{ )} o) = lim (B {7 (ROEERIZRONN ). 16)
We note that the L.H.S of (16) can be expressed as (from thefodystributions)
(divita(y)}, ¥(y)) = —(Ea(y), V(y))- (17)
The R.H.S of (16) involves the double integration
/ £ (y + Eb/) B f)\(Y) / /
= [ d b (2 b')db 8
[yt [ (BB g (18)

where ¢(b’) represents the probability density function lof The order of the integration can be
swapped as soon as (Fubini’s Theorem)

B = [ [ 1wl b (f*(y Teb) - f“”) ' 4(b) db'dy < +oo. (19)
s

£
Using Triangle inequality, we bounf () as

[2 (E) ’ (20)

IN



where

1€ = [ [ 10 By + b () dblay. 1)
y ’
Using Cauchy-Schwarz inequality and the fact thats tempered (cf. (14)), we get
7@ < [ I Col1+ ly + b a(b!) av'dy. 22)
y ’

Using the convexity property of the functign)™ for ny > 1, we get

/ /b () D]l Co(1 + 2%y ™ + 20~ el [|™) g(b') db'dy
y /

= ([ wwlay) ([ o) a)
Lozt ( / () ||yu"°dy) ( | o) db/)
ecorten ([umlay) ([ et am)ay)

< Ho0, (23)

J(e)

IN

under the hypothesis thdfy, {||b’||™} < +o0, V ng > 1. The ones involvingy are also finite
because) is a rapidly decaying function with finite support. Thugg) < oo, V ¢ > 0. Hence, we
interchange the integrals (with appropriate change ofadeis) to get

1) = [ awa [ up (REERIR0 ) 4y

9
—eb)) —
b’ y 5
Since is infinitely differentiable, we apply Taylor's theorem [&) ¢/(y — b’) and obtain
/ 1
€ 0
Therefore,
1
Li(e) = — b')db’ | b'Tf b'T —tebl)dt dy. 26
)= [ awan’ [ Tsgy) [ 6T Gy e aray (26)

We want to lete tend to O in the above expression. This is accomplished byapiication of
Lebesgue’s dominated convergence theorem. But firstly, wst tmound the integrand

2(y,b',t,e) = —q(b') b\ (y) BTV(y — teb) 5°(t), (27)
by an integrable functiong(y,b’, t), where
0 J 1,ifte(0,1)
A _{ 0, otherwise - (28)

To do that, we start withz(y,b’,¢,<)| and apply Cauchy-Schwarz inequality to obtain
0<|(y,b,t,e)] < q(B)|I|* [ Verly —teb))] 5°(2) [Er(x)]. (29)

Eo(y,b te)

Now, by using convexity of-)™ for n; > 1, we have

L+ ||y[|™ =1+ |ly — etb’ +etb’|™ <1+ 2m 7Yy — etb/||™ + 2 Y|etb’|| ™. (30)



Then, fore <1,

1+ [lyl™) goly, b’ t,e) < (142" |y —etb!||™)[[Vep(y — teb)| g(b') [b[|*8°(t)
+2M | Vep(y — teb)|[ q(b') b+ 17 50(t)
Cy1 a(®) [D|28°(t) + Cy 2 g(B") [b'][" 42 1™ 5°(1),
g (bl t)

whereCy,1 = supy {(1 + 2"~ ly[|™) [Vi(y) ||} andCy 2 = 2"~ supy {[|Ve(y)|[}-

IN

Since By, {||b’||" T2} < +o0, it is clear that

/ /gl(b/,t) db’ dt < +oo. (31)
rJt
Therefore, choosing, > ng + N, whereN is the dimension of, andV ¢ < 1 we see that
1)
|z(Y7b,7t7€)| < gO(yvb/7t7€) ||f)\(Y)|| < gl(b/7 ) n
1+ lyf™
1+ [ly[™
< Cogi(b'st) =" (32)
1+ |y
gy, b t)
Then, we notice that
1+ |lyf™ / 1+ [ly + K™ / 1+ [ly + K™ -
—=—dy = — = —dy = ——=———— | dy (Fubini)
/yl+ NE k;% o, v T+ Iy K[ T Jig, k;% T+ [y + K™
1 1+ k| .
< > LJFHH (1 is a column vector ofs)
Tk
1+ 2m0 LN 4 ono—L|k|no .
< (using convexity of(-)™)
g;N T+ K]
no—1 pr 2 1 no—1 1
< (@20 N 1+ Y T > TR
keZN\{0} keZN\{0}
<+oo <+oo
< 400, (33)

whenevem; > ng + N.
Because of (31) and (33), we find

/// (y,b,t)dy db’ dt = (// (y, bt db’dt> (/1Hg”mdy><+oo. (34)

Therefore,z qualifies for both Fubini's and Lebesgue’s Dominant Congaag Theorems (cf. (32)



and (34)). Hence, applying the limit with appropriate chad integrals, we get the desired result:

1
by (y) / bt Vip(y — teb') dt dy

lim [;(¢) = —lim q(b')db'/
y 0

e—0 e—=0 Jpr

/ / I'T ! . /T /
- —/,q(b)db/yb fA(y)/0 lim b Vo(y — t2b') dt dy
= - / £ (y) < / Q(b’)b’b’Tdb’> Vi (y) dy
y i

=/

= —(B(y), Vi(y)) = (divifa(y)},&(y)) (from (17) . ®
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