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The quality of super-resolution images obtained by single-
molecule localization microscopy (SMLM) depends largely 
on the software used to detect and accurately localize point 
sources. In this work, we focus on the computational aspects 
of super-resolution microscopy and present a comprehensive 
evaluation of localization software packages. Our philosophy 
is to evaluate each package as a whole, thus maintaining 
the integrity of the software. We prepared synthetic data 
that represent three-dimensional structures modeled after 
biological components, taking excitation parameters, noise 
sources, point-spread functions and pixelation into account.  
We then asked developers to run their software on our data; 
most responded favorably, allowing us to present a broad 
picture of the methods available. We evaluated their results 
using quantitative and user-interpretable criteria: detection 
rate, accuracy, quality of image reconstruction, resolution, 
software usability and computational resources. These metrics 
reflect the various tradeoffs of SMLM software packages and 
help users to choose the software that fits their needs.

We have conducted a large-scale comparative study of software 
packages developed in the context of SMLM, including recently 
developed algorithms. We designed realistic data that are generic 
and cover a broad range of experimental conditions and compared 
the software packages using a multiple-criterion quantitative  
assessment that is based on a known ground truth.

Our study is based on the active participation of developers of 
SMLM software. More than 30 groups have participated so far, 
and the study is still under way. We provide participants access to 
our benchmark data as an ongoing public challenge. Participants 
run their own software on our data and report their list of  
localized particles for evaluation. The results of the challenge are 
accessible online and updated regularly.

SMLM was demonstrated in 2006, independently by three 
research groups1–3, and has enabled subsequent breakthroughs 
in diverse fields4,5. SMLM can resolve biological structures at the 
nanometer scale (typically 20 nm lateral resolution), circumventing 
Abbe’s diffraction limit. At the cost of a relatively simple setup6,7, it 
has opened exciting new opportunities in life science research8,9. 

The underlying principle of SMLM is the sequential imaging 
of sparse subsets of fluorophores distributed over thousands of 
frames, to populate a high-density map of fluorophore positions. 
Such large data sets require automated image-analysis algorithms 
to detect and precisely infer the position of individual fluorophore, 
taking advantage of their separation in space and time.

The acquired data cannot be visualized directly; further com-
puterized image-reconstruction methods are required. These 
typically comprise four steps: preprocessing, detection, locali-
zation and rendering. Preprocessing reduces the effects of the 
background and noise; detection identifies potential molecule 
candidates in each frame; localization performs a subpixel  
refinement of the initial position estimates, usually by fitting 
a point-spread function (PSF) model; and rendering turns the 
detected molecule positions into a high-resolution map of mole-
cule densities. The performance of the overall processing pipeline 
contributes to the quality of the super-resolved image10.

The current literature describes more than 25 image-analysis 
software packages that process SMLM data. Each has its own char-
acteristics, set of parameters, accessibility and terminology10,11. 
Moreover, these packages are often validated using different data. 
In the absence of guidance, end users face a difficult choice in 
deciding which software is most suitable for them. The lack of a 
standardized methodology for conducting performance analysis 
and the need for reference benchmark data constitute the gap that 
we address in this work.

Our synthetic data imitate microtubule structures. The data 
consist of thousands of images with labeling densities that  
span well over an order of magnitude. The model of image  
formation accounts for the stochastic nature of the emission 
rate of the fluorophores, the characteristics of the optical setup,  
and various sources of noise. As in real data, it also includes 
inhomogeneous excitation, autofluorescence and readout  
electron-multiplying noise from the detector, typically an  
electron-multiplying charge-coupled device (EMCCD).

Our benchmark criteria were designed to objectively measure 
computational performance in terms of time and quality. Our 
evaluation effort is more comprehensive than previous work12 in 
benchmarking a large number of software packages, in synthesizing  
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We generated training data and disclosed them together with 
the true locations of the fluorophores, allowing participants to 
tune their software. We also generated contest data and deliv-
ered them without ground-truth information. We assessed every 
algorithm on the basis of the contest data. We make these data 
available at http://bigwww.epfl.ch/smlm/datasets/; the collection 
is already used by developers14–19.

Quantitative assessment metrics
The core task faced by participants in our study is the 2D localization 
of single molecules. To rate the performance of their software, we 
defined multiple criteria (Online Methods) that highlight different 
aspects of SMLM algorithms: detection rate, accuracy, image quality, 
resolution, usability (USA) and execution runtime (TIME). Other 
preprocessing or postprocessing steps, such as drift correction and 
rendering, were excluded from our analysis to better provide an unbi-
ased comparison based primarily on the localization performance.

Detection rate and localization accuracy
The detection rate and localization accuracy are based on the pair-
ing between the molecules localized by the participants and the 
molecules from the ground truth. These criteria do not depend 
on any rendering mechanism.

The detection rate quantifies the framewise fidelity and the 
completeness of the set of localizations with respect to the ground 
truth, measured in our case by a Jaccard index. We found that the 
detection rate (JAC) correlates with the level of difficulty.

The localization accuracy (ACC) is measured by the root-mean-
square error (RMSE) of matched localizations. We found that this 
averaged 21.05 nm and 32.13 nm for LS1 and LS2, respectively.  
This is consistent with the Cramér-Rao lower bound predicted 
according the definition of uncertainty given by Rieger et al.20. The 
detection rate and localization accuracy of each software are docu-
mented in Figure 2 and in Supplementary Figures 1 and 2.

Image quality and image resolution
Ultimately, the data representation favored by SMLM  
practitioners is not a list of localizations but a rendered  
image10 (Supplementary Data 1 and Supplementary Videos 1–6).  

Figure 1 | Construction of the bio-inspired 
data. (a) Top, 3D structure simulating 
biological microtubules. Every single 
fluorophore event is uniquely identified  
and stored; collectively, they constitute  
the ground-truth localizations which  
can be rendered at any temporal and  
spatial scale (lower panels). (b) Each  
fluorophore is considered a point  
source and convolved with a 3D PSF.  
Combined with background and  
autofluorescence of the structure,  
the convolved image determines the  
number of photons at each pixel.  
These photons are then transformed  
into a number of electrons based on  
quantum efficiency (QE), shot noise  
and the EMCCD parameters. The image  
is reduced to the desired camera  
resolution, for example, 100 nm/pixel.  
Finally, these values are fed to an electron-to-DN converter (digital number, taking into account the readout noise and the quantization level).  
(c) These operations are repeated to obtain long sequence (LS) of low-density frames or short sequence of high-density (HD) frames.

data closer to biological reality, and in including a rich set of 
evaluation criteria such as detection rate, accuracy, image quality, 
resolution and software usability.

A byproduct of our work is an extensive and annotated list 
of software packages (http://bigwww.epfl.ch/smlm/software/), 
which should prove a resource not only to practitioners but also 
to developers because it helps identify which aspects of existing 
software may be in need of further development.

RESULTS
Bio-inspired data
We designed our synthetic data to be as similar as possible to 
images derived from real cellular structures. A key element is their 
continuous-domain description, as opposed to a spatially discrete 
model. For instance, we simulate microtubules by means of three-
dimensional (3D) paths that are defined on the continuum (Fig. 1a),  
making it possible to render digital images at any scale. We typically  
choose a scale of 5 nm per pixel. Our synthetic model takes many 
parameters into account, among them sample thickness, random 
activation, laser power, variability of the excitation laser, the  
lifetime of the fluorophores, autofluorescence, several sources 
of noise, pixelation, analog-to-digital conversion and the PSF of 
the microscope (Fig. 1b). Our PSF model is made up either of 
classical Gaussian-based 3D functions or of the more realistic 
Gibson-Lanni formulation that benefits from a fast and accu-
rate implementation13. Because multiple-frame events are rare in 
the data of interest, we tuned the lifetime model to favor single-
frame events. We rely primarily on these ground-truth data for 
our objective evaluation of algorithms.

To accommodate the intended uses of the available software, we 
chose to image the same synthetic sample using different imaging 
modes: long sequence (LS) and high density (HD). The LS data are 
low-density sequences of about 10,000 frames each, and the HD 
data are high-density sequences of about 500 frames that include 
overlapping PSFs (Fig. 1c). Independently of the imaging mode, 
we changed the degree of difficulty of the data by modifying the 
contribution of autofluorescence, the amount of acquisition noise 
and the thickness of the sample (see Online Methods) to create 
datasets LS1-3 and HD1-3 (in order of increasing difficulty).

3D biological structure

a b c
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We used two image-based criteria in our 
assessment: image quality (signal-to-noise 
ratio, SNR) and image resolution (Fourier 
ring correlation, FRC21). Methods afflicted 
by issues such as sampling artifacts or a low 
detection capacity at the image border are 
characterized by a low SNR. Conversely,  
a high SNR is often indicative of a  
successful tradeoff between detection  
rate and accuracy.

Software efficiency
In a retrospective analysis, we identified 
the five best methods, in terms of the 
tradeoff between accuracy and detection 
rate for each dataset. We defined a linear 
regression that fits the best methods in  
a plot of ACC versus JAC, and call it  
an efficiency line (Fig. 3). The distance of  
the (JAC, ACC) coordinate for each  
software to such a line indicates the  
performance of the software.

The level of difficulty increases from LS1 to LS3, as evidenced 
by the average performance (JAC, ACC), which was (79.58%, 
29.98 nm) for LS1, (55.64%, 41.91 nm) for LS2 and (35.64%, 55.82 
nm) for LS3. These findings are consistent with our engineering of 
the data to have increasing levels of noise, as the theory predicts 
that the presence of noise leads to an increase in the uncertainty 
of the location of a particle. Likewise, the detection rate is also 
affected by noise; single molecules with lower emission rate and 
deeper axial position are more difficult to detect.

Algorithms
Our study includes more than 30 packages (Table 1), covering 
a large proportion of the SMLM software currently available. 
Aside from a few that do not fit our validation framework because 
their SMLM reconstruction is based on deconvolution without 
explicit localization22, most packages have a similar architecture. 
However, a detailed analysis reveals fundamental differences.

Within the detection step, methods as diverse as low-pass  
filtering, band-pass filtering, watershed, and wavelet transform, to 
name a few, are deployed. The parameters of these preprocessing 
operations need to be determined in an ad hoc fashion. In some 
cases, we found that they cannot be set by the user; even when 

they can be, often there is no calibration procedure provided. 
Most algorithms isolate candidate pixels by applying a threshold 
to identify potential local extrema, but each software uses differ-
ent methods for determining the threshold value: level of noise, 
spot brightness, PSF size and/or particle density.

Over two-thirds of the participating packages carry out the 
localization step by means of a fitting with a Gaussian function. 
Other algorithms use an arbitrary PSF instead; DAOSTORM  
and SimpleSTORM use a measured PSF. Distinctively, the two 
packages MrSE and RadialSymmetry exploit the radial symmetry 
of the PSF.

We have identified three groups of localization methods 
and indicated their performance in Table 2. In Generation 1,  
the basic methods perform localization by means of center  
of mass (QuickPALM), triangularization (fluoroBancroft) or  
linear regression (Gauss2dcir). Although very fast, these methods  
often fail to reconstruct HD data. Generation 2 is the larg-
est group of methods, including about two-thirds of all soft-
wares submitted thus far. They are characterized by the use of  
iterative localization algorithms such as maximum-likelihood esti-
mators (MLE) or least-squares minimizers (LS). Previous works 
compare the LS or MLE algorithm in detail10,23. Generation 3  
comprises advanced methods, often unpublished. They improve 
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Figure 2 | Accuracy versus detection rate for 
each tested software. Scatter plots show high-
density (HD) data above and long sequence 
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of the field with high JAC and/or low ACC. 
The length of the bars is proportional to the 
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the detection rate while keeping a high 
localization accuracy. This group includes 
minimum mean squared error (MMSE)/
maximum a posteriori probability (MAP) 
approaches (B-recs), a method with high-
quality interpolation (simpleSTORM), a 
template-matching technique (WTM),  
a mean-shift approach (simplePALM) 
and packages that exploit the radial symmetry (RadialSymmetry 
and MrSE). Detailed information on the software packages is  
in Supplementary Notes 1 and 2.

Usability and computation time
End users require that software packages be accessible, easy to use 
and fast. Although these aspects are subjective, they are important 
enough to justify their inclusion in our study. To score them, we 
prepared a questionnaire for the participants. We combined the 
accessibility score with a usability score that covers quality of 
documentation and user-friendliness. The open-source software 
ImageJ/Fiji and the versatile platform Matlab are the most highly 
represented frameworks hosting SMLM packages.

Finding the accurate position of millions of fluorophores is a 
heavy computational task. We observed that the four packages 
that use specialized hardware accelerators (a graphics processor 
unit, GPU, or field-programmable gate array, FPGA) reduce their 
runtimes by an order of magnitude, sometimes reconstructing a 
super-resolution image in less than a minute.

Benchmarking reporting and ranking
We returned to every participant a benchmark report that includes 
renderings at different scales (Fig. 3) and quantitative measures 
(Fig. 4). In particular, the bottom left curve of Figure 4 illustrates 
how the proximity of fluorophores, dNN, influences the perform-
ance of the software. In this specific case, the rate of detection 
improves from about half—when dNN is below the FWHM of the 
PSF—to near perfection when dNN is sufficient high.

To coalesce our six criteria for a single ranking, we computed 
the final score as the weighted sum of relative grades from  
0 to 5, as presented in Table 2. We gave a greater weight to  
the objective criteria JAC, ACC, SNR and FRC than to the sub-
jective criteria USA and TIME. With our particular choice of 
weights, the ranking for the LS data is as follows, starting from 

the best results: ThunderSTORM, SimpleSTORM and PeakFit. 
For the HD data, it is B-recs, WTM and DAOSTORM.

DISCUSSION
The accuracy of single-molecule localization has a direct impact 
on the resolving power of the reconstructed image. We confirmed 
in this study of SMLM software packages that the experimental  
accuracy is one order of magnitude better than the classical  
diffraction limit, which supports theoretical findings24,25. This is 
the best one can hope for; indeed, a few software packages nearly 
achieve the Cramér-Rao lower bound.

Notwithstanding its popularity, the accuracy measure may 
still misrepresent performance. For instance, it does not capture 
issues related to the spread of the localizations—too few accurate 
ones, for example, or too many false positives. To avoid reliance 
on accuracy alone, we therefore considered additional criteria  
such as the detection rate, which describes the overlap between 
the set of detected molecules and the set of true molecules, along 
with a measure of the quality of the rendered image and a measure 
of its resolution.

Accuracy and detection rate tend to be in opposition—the 
average accuracy of localization can often be made to artificially 
increase just by excluding those unreliable molecules that emit a 
low number of photons. It is therefore enlightening to quantify the 
tradeoff between accuracy and detection. This idea has led us to 
propose the efficiency lines or curves (Fig. 2), which should aid 
microscopy practitioners in selecting software by better allowing 
them to judge if a particular software will help them meet their 
own preferred tradeoff.

We proposed a combination of six simple metrics to help users 
choose an SMLM software package. While no single measure  
of performance can capture the complexity of this choice, our  
goal with the combined criterion is to provide guidance to  
practitioners that is balanced and fair.
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Although the correlation (CORR) between the number of 
photons of the ground truth and the number estimated by the 
tested software is a parameter of interest, only a few participants 
provided us with relevant output to obtain these correlations.  
We therefore decided to exclude CORR from the final score  
but have encouraged developers to focus their efforts on  
improving accessibility and usability and to provide an estimate 
of the number of photons or the uncertainty of measurements  
for future releases. Also, we did not assess the grouping of  

multiple-frame emission from a single molecule, as this is  
often carried out at the postprocessing stage.

All packages we studied require parameters from the user. 
Unfortunately, choosing appropriate values is by no means easy 
or straightforward. More often than not, the tuning of parameters 
requires a deep knowledge of the algorithmic pipeline; inexperi-
enced users may find that they need to invest a lot of time before 
they can obtain satisfactory results. For this study, to ensure  
that each software was properly tuned to our simulated database, 

Table 1 | Description of SMLM software 
Software Molecule detection PSF Method Platform Acc. Affiliation

3D-DAOSTORM28 Adaptive threshold—update on residual 
images

Gauss LS Python + Harvard Univ., USA

a-livePALM29 Denoising, SNR threshold, adaptive  
histogram equalization

Gauss MLE Matlab + Karlsruhe IT, Germany

Auto-Bayes Generalized minimum-error threshold  
(GMET), local maximum

Gauss, Weibull LS Stand-alone + NCNST, Beijing, China

B-recs Detection: n/a; fit: Bayesian inference 
framework

Arbitrary MMSE, MAP Stand-alone − Janelia Farm, HHMI, USA

CSSTORM30 No explicit localization; convex  
optimization problem (HD)

Gauss Compressed  
sensing

Matlab + UCSF, USA

DAOSTORM31 Gaussian filtering, local maximum (HD) Measured, LS Python + Univ. Oxford, UK
FacePALM32 No explicit localization; background 

estimation
arbitrary − Python − Univ. Amsterdam,  

the Netherlands
FALCON33 Deconvolution with sparsity prior, local 

maximum (HD)
Taylor approx. ADMM Matlab + KAIST, Daejeon,  

Republic of Korea
Fast-ML-HD34 Sparsity constraint, concave-convex  

procedure (HD)
Gauss MLE Matlab − KAIST, Daejeon,  

Republic of Korea
FPGA35 Adaptive threshold Gauss MLE, CoMass Stand-alone − Univ. Heidelberg, Germany
Gauss2DCirc36 Fixed SNR threshold Gauss REG Matlab + Univ. Illinois, USA
GPUgaussMLE37 Simple (unspecified) methods to select 

subregions
Gauss MLE Matlab + TU Delft, Delft,  

the Netherlands
GraspJ38 Peak finding: fixed threshold value Gauss MLE ImageJ + ICFO, Barcelona, Spain
Insight3 Low-pass filtering, local maximum Arbitrary LS Stand-alone − UCSF, USA
L1H39 No explicit localization; L1 homotopy,  

FIST deconvolution
Gauss, arbitrary Compressed  

sensing
Python + Harvard Univ., USA

M2LE40 Adaptive threshold Gauss MLE ImageJ + Cal Poly Pomona, USA
Maliang41 Annular averaging filters, denoising by 

convolution
Gauss MLE ImageJ + WUST, Wuhan, China

Micro-Manager LM Adaptive threshold Gauss LS ImageJ + UCSF, USA
MrSE42 Band-pass filtering, local maximum Radial CoSym Stand-alone − WUST, Wuhan, China
Octane43 Watershed maximum Gauss LS ImageJ + Univ. Connecticut, USA
PeakFit Band-pass filtering, local maximum Gauss LS ImageJ + Univ. Sussex, UK
PeakSelector44 Time-domain filtering, adaptive threshold Gauss LS IDL, Matlab − HHMI, USA
PYME27 Wiener filtering, adaptive threshold Arbitrary LS Python + Univ. Auckland, New Zealand
QuickPALM45 Band-pass filtering, fixed SNR threshold Gauss CoMass ImageJ + Institut Pasteur, France
RadialSymmetry46 Filtering, local max., minimal distance  

to gradient
Radial CoSym Matlab + Univ. Oregon, Eugene, USA

rapidSTORM12 Low-pass filtering, local maximum Gauss LS, MLE Stand-alone + Univ. Würzburg, Germany
SimplePALM47 Variance stabilization denoising, DoG, 

probabilistic threshold
n/a Mean-shift Stand-alone − Molecular Genetics Center,  

Gif-sur-Yvette, France
simpleSTORM14 Self-calibration, noise normalize,  

background subtraction, P value
Gauss, measured Interpolation Stand-alone + Univ. Heidelberg, Germany

SNSMIL Gaussian filtering, fixed contrast threshold Gauss LS Stand-alone + NCNST, Beijing, China
SOSplugin Wavelet transform, local maximum,  

Gaussian mixture
Gauss LS ImageJ + Erasmus MC, Rotterdam,  

the Netherlands
ThunderSTORM15 Extensive collection of methods, preview, 

filtering, local maximum
Gauss LS, MLE ImageJ + Charles Univ., Prague,  

Czech Republic
W-fluoroBancroft48 Wavelet, adaptive threshold Gauss fB Matlab + Boston Univ., USA
WaveTracer49 Wavelet, watershed maximum Gauss LS Metamorph − Univ. Bordeaux, France
WTM50 Wedge template matching (HD) Wedge Match. Stand-alone − Hamamatsu Photononics, Japan
The software packages whose manufacturers participated in our study are listed. The study is ongoing, and this list will be updated at http://bigwww.epfl.ch/smlm/software/. Software marked 
‘ImageJ’ runs on compatible products ImageJ, Fiji, Icy and ImageJ2. Abbreviations for PSF: Gauss, Gaussian, elliptical Gaussian or averaged Gaussian. Abbreviations for methods: ADMM, alternat-
ing direction method of multipliers; CoMass, center of mass; CoSym, center of symmetry; fB, fluoroBancroft; LS, least-squares; MAP, maximum a posteriori; MLE, maximum-likelihood estimator; 
MMSE, minimum mean-square error; REG, regression. Abbreviations regarding open access: +, available online (sometimes upon request); −, not available or included in commercial package.
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we encouraged the developers themselves to run their own soft-
ware, guided by the training data. To alleviate the difficulty of 
presetting parameters, we suggest that developers incorporate 

self-calibration capabilities or dynamically tune the parameters26. 
We predict that this will be one of the key factors determining the 
success of future software14.

Table 2 | Quantitative comparison for long-sequence (LS) and high-density (HD) data
Physical values Grades

Score Run byCriteria JAC ACC SNR FRC CORR JAC ACC SNR FRC USA TIME

LS data
Unit % nm dB nm % [0..5] [0..5] [0..5] [0..5] [0..5] [0..5] [0..5]
Weights 1 1 1 1 0.25 0.25
3D-DAOSTORM 62.5 36.1 6.0 71.1 n/a 3.58 3.67 4.20 3.03 3.00 1.98 3.44 Author
a-livePALM 54.5 35.6 5.1 62.6 n/a 2.02 3.74 3.13 3.71 2.50 3.97 3.09 Author
Auto-Bayes (W) 69.1 45.4 5.6 66.7 n/a 4.83 2.00 3.72 3.38 0.00 0.41 3.05 Author
B-recs 64.2 40.4 5.9 74.1 51.2 3.91 2.89 4.07 2.78 0.00 0.00 2.96 Author
Fast-ML-HD 52.9 44.9 3.7 83.9 60.6 1.72 2.08 1.40 2.00 0.00 0.00 1.43 Author
FPGA 47.8 36.3 4.2 81.3 62.8 0.73 3.63 2.01 2.21 0.00 4.11 2.00 Author
Gauss2dcirc 53.8 71.5 1.1 143.2 64.0 1.90 0.00 0.00 0.00 3.00 2.75 0.69 Expert
GPUgaussMLE 60.9 44.0 4.4 65.5 2.8 3.26 2.25 2.26 3.48 4.00 3.00 2.78 Author
GraspJ 51.7 47.2 4.4 77.2 n/a 1.48 1.67 2.22 2.54 4.50 5.00 2.13 Author
InSight3 53.9 41.8 4.1 74.5 53.5 1.90 2.64 1.91 2.75 2.50 2.50 2.19 Author
Maliang 53.3 35.6 4.4 69.5 60.4 1.80 3.75 2.22 3.16 1.50 0.50 2.44 Author
MicroManager 55.3 34.5 4.9 64.3 57.7 2.18 3.95 2.87 3.57 5.00 5.00 3.28 Author
MrSE 54.6 34.8 4.5 67.6 n/a 2.05 3.89 2.35 3.31 1.50 0.50 2.60 Author
Octane 42.7 53.9 3.2 114.4 n/a 0.00 0.48 0.84 0.00 4.00 3.99 0.62 Expert
PeakFit 60.0 34.9 5.5 64.6 59.5 3.09 3.87 3.61 3.55 4.50 3.07 3.51 Author
PeakSelector 49.8 40.3 5.2 66.9 59.4 1.11 2.91 3.18 3.36 0.00 2.50 2.39 Expert
PYME 48.6 36.5 3.5 73.8 n/a 0.88 3.58 1.16 2.81 3.00 3.97 2.13 Author
QuickPALM 41.9 50.6 3.5 95.4 57.7 0.00 1.05 1.21 1.08 5.00 5.00 1.14 Author
RadialSymmetry 47.3 31.0 4.4 74.4 n/a 0.64 4.57 2.21 2.76 4.00 4.11 2.61 Author
RapidSTORM 54.7 45.4 5.5 68.4 61.7 2.06 1.99 3.60 3.25 5.00 5.00 2.88 Author
SimplePALM 68.8 44.4 5.8 79.1 n/a 4.79 2.17 3.96 2.39 0.00 5.00 3.15 Author
SimpleSTORM 67.9 40.8 5.6 66.3 n/a 4.61 2.81 3.64 3.41 5.00 2.74 3.59 Author
SNSMIL 63.0 45.3 5.0 66.0 n/a 3.66 2.01 3.03 3.44 0.00 2.17 2.73 Author
SOSplugin 59.2 37.8 5.7 70.0 n/a 2.94 3.35 3.77 3.11 2.00 3.69 3.18 Author
ThunderSTORM 68.6 40.0 6.0 60.8 46.5 4.75 2.97 4.14 3.85 5.00 1.41 3.81 Author
W-fluoroBancroft 61.9 56.5 1.5 113.8 n/a 3.45 0.00 0.00 0.00 1.50 3.70 1.02 Author
WaveTracer 60.0 38.8 6.1 69.5 n/a 3.08 3.17 4.28 3.16 2.50 0.00 3.12 Author
WTM 66.0 47.6 4.0 89.7 60.5 4.24 1.61 1.83 1.54 0.00 3.28 2.08 Author
Average on LS 57.0 42.6 4.6 77.7
Gauss 43.6 4.6 78.1
Radial 32.9 4.4 71.0
Generation 1 59.5 2.0 117.5
Generation 2 40.8 4.9 72.1
Generation 3 39.9 5.0 75.2

HD data
B-recs 63.7 78.4 4.4 93.2 20.2 5.00 1.76 4.44 3.86 0.00 0.00 3.35 Author
DAOSTORM 45.1 82.2 3.9 78.5 27.5 3.99 0.91 3.52 4.60 3.00 0.00 3.06 Author
FALCONa 39.1 75.5 3.9 99.2 17.3 3.38 2.42 3.49 3.56 3.00 0.00 3.02 Author
Fast-ML-HD 52.1 80.3 3.4 104.6 19.7 4.70 1.33 2.53 3.29 0.00 0.00 2.63 Author
FPGA 14.3 70.2 3.0 104.9 30.1 0.89 3.59 1.68 3.27 0.00 4.11 2.32 Author
L1H 42.5 76.9 3.6 136.1 n/a 3.73 2.10 2.81 1.71 3.00 1.62 2.56 Author
Octane 18.2 62.9 3.0 124.0 n/a 1.28 5.00 1.83 2.32 4.00 3.99 2.76 Expert
PeakFit 37.3 81.5 3.9 105.9 11.9 3.20 1.07 3.39 3.22 4.50 3.07 2.84 Author
PeakSelector 15.7 84.4 3.5 87.8 n/a 1.03 0.43 2.78 4.13 0.00 2.50 2.00 Expert
RadialSymmetry 11.8 61.5 2.0 164.2 n/a 0.64 5.00 0.00 0.30 4.00 4.11 1.77 Author
SimpleSTORM 27.9 70.5 3.6 131.8 n/a 2.26 3.54 2.90 1.92 5.00 2.74 2.79 Author
SNSMIL 23.3 80.8 3.3 143.2 n/a 1.80 1.23 2.29 1.35 0.00 2.17 1.60 Author
SOSplugin 18.2 71.8 3.6 106.2 n/a 1.28 3.23 2.85 3.21 2.00 3.69 2.67 Author
ThunderSTORM 31.7 70.9 2.9 154.2 15.7 2.64 3.44 1.67 0.80 5.00 1.41 2.26 Author
W-fluoroBancroft 19.2 80.9 0.8 203.5 n/a 1.38 1.19 0.00 0.00 1.50 3.70 0.86 Author
WTM 54.2 85.5 4.4 91.2 21.9 4.91 0.17 4.36 3.96 0.00 3.28 3.16 Author
Average on HD 32.2 75.9 3.3 120.5
aSoftware version under development.
Performance measures for the indicated software packages are shown. JAC, Jaccard index; ACC, localization error; SNR, image quality; FRC, image resolution; USA, usability; TIME, computational time. Bold 
numbers indicate top scorers. The correlation of the estimated number of photons (CORR) was excluded from our analysis but is given here for the sake of completeness. The relative grades are normalized 
on a scale from 0 (worst) to 5 (best). The score is a weighted sum of the six criteria; here, the weights are 1 for the four quantitative criteria, 0.25 for the usability, and 0.25 for the computational time.
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The simulated ground-truth data used for our comparison remain 
accessible to future participants. We pledge to extend this study with 
new results as they become available and to enrich our collection 
of data. We plan to include additional features such as several levels  
of molecule density, 3D (PSF engineering and multiple planes),  
drift and various noise models for EMCCD cameras and sCMOS 
(scientific complementary metal-oxide-semiconductor) cameras.

We encouraged all participants to produce output data in com-
mon formats to facilitate interoperability and to promote inde-
pendent rendering software27 (https://github.com/PALMsiever/). 
A first step in this direction was taken by many participants in 
the IEEE International Symposium on Biomedical Imaging 2013 
(ISBI 2013) challenge. 

Our study has shown that a simple Gaussian PSF model is suffi-
ciently accurate for low-density data, whereas the quality of high-
density imaging depends strongly on the model of the PSF. We 
predict that the PSF model will have an even more significant role 
in 3D SMLM applications. We see great potential in a two-phase 
reconstruction workflow—a first reconstruction that is fast but 
has reduced performance, followed by a slower run that yields 
improved results.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Data. Establishing reference data is a key point for conducting a 
fair evaluation of image analysis algorithms; all software packages 
should use the same benchmark data sets. In microscopy, biolo-
gists and practitioners prefer real experimental image sequences, 
while algorithm developers need simulated data sets with ground-
truth information. Here, we provide both: real experimental data 
sets which are mostly useful for visual inspection and synthetic 
simulated data sets, which are intensively used for the quantita-
tive evaluation.

Experimental data. We acquired two sequences of images of 
tubulins, one in low-density imaging conditions (RealLS, a long 
sequence of 15,000 frames of 64 × 64 pixels) and one in high-
density imaging conditions (RealHD, a short sequence of 500 
high-density frames of 64 × 64 pixels). The sample is Cos-7 cells 
fixed in methanol. The microtubules are stained with α-tubulin 
primary antibodies and Alexa-647–conjugated secondary anti-
body fragments.

Simulated data. To achieve realistic images, we defined math-
ematical models for biological structure. We chose microtubules 
because they are often used to showcase SMLM studies. They are 
components of most eukaryotic cells which have widths smaller 
than the diffraction limit of the conventional light microscope. 
Microtubules are defined with their central axis elongating in a 3D 
space having an average outer diameter of 25 nm with an inner, 
hollow tube of 15 nm diameter.

To obtain rendered images at all scales including very high reso-
lution (up to 1 nm/pixel), we represent the continuous-domain 
3D curve by means of a polynomial spline. The sample is imaged 
in a limited field of view, i.e., less than 20 × 20 µm2, and the cen-
terlines of the microtubules have limited variation along the z  
(vertical) axis, i.e., less than 1 µm. The fluorescent markers are 
uniformly distributed over the structure according to the required 
density. We randomly assign each fluorophore with a random 
photon emission rate and with an active time instant according to 
a statistical lifetime model. For the synthetic data sets, we devel-
oped a simulator that can generate realistic image sequences of 
thousands frames resulting from the stochastic activation of mil-
lions of fluorophores.

The sample structure, fluorophore excitation, and image for-
mation can be completely controlled with a large number of user 
configurable parameters (Supplementary Note 3). We defined 
the underlying sample structure in a continuous space which 
allows rendering of digital images at any scale. The exact loca-
tions of all fluorophores are therefore stored at high precision, as 
floating point numbers expressed in nanometers. This ground-
truth file is useful for conducting objective evaluations without 
human bias.

Photon emission model. We calculate the photon flux in the 
following manner51:

F
P
e

= F s

where Φ is the quantum yield of the dye, P is the excitation  
laser power in W/cm2, e is the energy of a single photon,  
σ = 1,000 ε ln(10)/NA is the absorption cross section, ε is the 
absorptivity coefficient of the dye and NA is the numerical aperture 
of the lens. The spatial variation of the excitation laser power, P, is 
modulated by a unimodal function that produces higher excitation  

at the center, rather than the border, of the field of view. The flux 
F is given in photons/s, and it is used for randomly determining 
a flux value for every excited fluorophore under a probability 
density function of a Poisson random variable.

Once the flux has been determined for the excited fluorophore, 
we choose an active duration A and a life-time model for comput-
ing the number of photons that would be emitted during the frame 
acquisition time T. We proposed three different life-time models: 
constant, linearly decreasing and exponentially decaying. This 
last is motivated by photobleaching phenomenon. An additional 
temporal parameter is a time delay ∆ between the beginning of 
the frame and the time the fluorophore starts emitting photons. 
In this study, we chose A, ∆ and T to be random variables but we 
impose that most of the photons of a single molecule are emitted 
within a single frame.

Source of photons. We consider three independent sources of 
photons: the signal of interest (the activated molecule) modeled 
as described above, the background signal normally distributed, 
slowly changes with time, and the autofluorescent signal simu-
lated by introducing deep clusters of intense fluorophores that are 
constantly in an active mode, slowly changes with time. We sum 
these three sources of photons to yield the image that impinges 
on the detector. We then generate the microscopic image of each 
fluorophore by simulating the image formation process (Fig. 1b). 
Noise sources and perturbations include: non-homogeneous exci-
tation laser power; random nature of the emission process of the 
fluorophore; shot noise for small photons count; EMCCD and 
read-out noise models.

A volumetric density parameter ρ controls the number of 
fluorophores per µm3 that we generate. This parameter, together 
with the number of frames parameter, controls the total imaging 
density conditions: low-density, long sequences (LS) and high-
density sequences (HD).

High-density. A recent trend in the super-resolution localization 
microscopy is the development of methods to detect multiple over-
lapping emitters in high density data sets31,41,52–55. To benchmark 
these methods, our generated HD are particularly suitable. Taking 
advantage of the exact knowledge of the sample structure, we 
defined three properties to qualify the density of the sequence: the 
average distance dNN of a fluorophore to its nearest fluorophore 
within the same frame, the average number of fluorophores N per 
frame, and the average number of fluorophores M per µm2. We 
obtained the following properties: dNN = 1,536.1 nm, N = 26.3 nm,  
M = 0.14 for LS data sets and dNN = 156.9 nm, N = 562.7 nm,  
M = 2.19 for HD data sets. The high number of fluorophores  
per frame and the small dNN setting induce numerous overlapping 
of PSFs in the HD data sets.

Image formation. We put our effort in implementing a faithful 
reproduction of the physical reality to produce plausible synthetic 
images. The individual fluorophores, which are taken to be ideal 
point source, are convolved with the PSF of the microscope. Here, 
two models of PSF were considered, the defocussed Gaussian PSF 
model and the Gibson and Lanni PSF model.

The xy-Gaussian and z-exponential PSF model is defined as a 
2D Gaussian function in the xy plane centered at (xc, yc) in

f x y z A z e
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where the variance depends on the axial position of the particle,

s l
z e

z z
z z

( ) = −
−

( )
2

2
NA

focus

defocus focus

log

The amplitude A(z) is chosen in such a way as to make f(x,y,z) 
have a unit norm at every value of z. The value zfocus is the axial 
position of the focal plane and zfocus allows one to introduce defo-
cussing effects. The xy-Gaussian and z-exponential is a common 
approximation of the main lobe of the Airy pattern.

The scalar Gibson-Lanni model generates a more accurate  
PSF by using a 3-layer model taking into account refractive 
index mismatch at each optical interface. We rely on our accurate  
and fast implementation of the Gibson and Lanni PSF model  
to evaluate millions of convolution operations in very high  
resolution (5 nm/pixel) in a reasonable amount of time.

Conversion of photons to a digital number. At this stage, the 
number of electrons is converted to a digital number DN56 by  
a simulated A/D converter that is characterized by a linear gain 
and an offset. Readout noise (Gaussian distributed) and dark 
noise (Poisson distributed) are added, as well. Final pixel values 
are calculated by checking for saturation and by quantization 
into 14-bits. Our simulated EMCCD camera down-samples the 
high resolution image from 5 nm/pixel to 100 or 150 nm/pixel 
by means of averaging. We then simulated the electron multiplier  
component by multiplying every pixel value by the EM noise  
factor 2½.

Data delivery. The frames are stored in a standard uncom-
pressed 16-bits TIFF format. While typical experimental data 
consists of 10,000 frames, we restricted the number of frames so 
as to have data sets of moderate size, say 300 MB, after lossless 
compression. Such file sizes are still convenient to download from 
the Internet. Our data sets are accompanied by metadata infor-
mation that includes microscope and camera parameters that are 
usually available in real experiment.

Level of difficulty. To produce data sets with different degrees 
of difficulty, we modified the contribution of autofluorescence, 
the level of acquisition noise, and the thickness of the sample. 
At the end of each simulation, we calculated two measures for 
every fluorophores: dNN, the distance of the nearest neighbor-
hood in the same frame; SNRf, the local signal-to-noise ratio of 
a fluorophore. The SNRf is the ratio of the difference of the peak 
signal and the mean of the local surrounding background and the 
standard deviation of the local background. For the HD data, dNN 
is smaller than the size of the PSF, so that frames contain many 
overlapping PSFs (Supplementary Note 3).

Future directions. In the future, our reference data will include 
more features, such as drift, 3D localization (PSF engineering57,58 
and multiple planes59,60, additional levels of molecule density, 
multiple fluorescent channels, asymmetrical PSF due to dipole 
effect61, scattering effects, and a richer variety of noise models 
associated with various types of cameras, EMCCD, sCMOS62,63. 
It will also be interesting to generate benchmarking data to test 
the impact of clustering (spatial aggregation) and diffusion for 
single-particle tracking.

Evaluation and scoring calculation. Theoretical accuracy.  
The simplest theoretical localization precision is given by s/√N, 
where s is the size of the PSF and N is the number of detected 

photons23,25. This Cramér-Rao lower bound (CRLB) was initially 
introduced as a fundamental limit of accuracy23,24,37. There also 
exist refined CRLBs that take pixelation, various sources of noise, 
and fluorescence background into account. A survey of localiza-
tion accuracy and precision in the SMLM context can be found 
in Deschout et al.64, while uncertainties in the lateral localiza-
tion in super-resolution microscopy were also addressed in Rieger  
et al.20.

Some of our data fail to be compatible with the restrictive 
assumptions needed to establish CRLBs. It is only over LS1 and 
LS2 that it is valid to compare the experimental accuracy of the 
tested software packages to the theoretical expectations. Selecting 
the five best algorithms, we found that the accuracies are 21.05 nm  
and 32.13 nm for LS1 and LS2, respectively. They are worse than 
predicted by Thompson’s rule (13.98 nm, 15.96 nm), but it is 
known that Thompson’s rule24 is too optimistic. More-realistic 
results are obtained with a bound recently proposed that gives 
(19.10 nm, 25.78 nm)20.

Matching of two sets of localization. To establish statistical  
measures of detection rate and the localization accuracy, a pairing 
must first be found between the molecules localized by the partici-
pants and the molecules from the ground-truth. For each frame f,  
the pairing is obtained by solving a bi-partite graph-matching 
problem of minimizing the sum of distances between the two  
elements of a pair. The matching is enabled when the distance from 
Pref(f) to its closest point Ptest(f) is less the full-width half-maximum  
(FWHM) of the PSF. We deployed two matching algorithms: the 
presorted nearest-neighbor search and the Hungarian algorithm 
(Supplementary Software). Both gave similar results.

Computation of detection rate using the Jaccard index (JAC).  
The localized molecules successfully paired with some ground-
truth molecule are categorized as true positives, TP; the remaining 
localized molecules are farther than ρ, unpaired, and categorized 
as false positives, FP; finally, ground-truth molecules that are not 
associated with any localized molecule are categorized as false 
negatives, FN.

The detection rate quantifies the framewise fidelity and com-
pleteness of the set Ptest(  f  ) of localizations with respect to the 
ground-truth Pref (  f  ). It involves the positive predictive value (pre-
cision p), the sensitivity (recall r) and the Jaccard index (JAC). 

p r=
+

=
+

=
+ +

TP
FP TP

TP
FN TP

JAC
TP

FN FP TP
, ,

In this study, we observed that the precision value p is high (aver-
age 0.956, s.d. 0.09) in comparison to the recall value r (average 
0.487, s.d. 0.25). We thus believe the most relevant measure of 
similarity between lists of localized molecules is the Jaccard index, 
j (i.e., JAC, in %).

Computation of localization accuracy using the root-mean- 
square error (RMSE). Let (x yn n

Test Test, ) and (x yn n
Ref Ref, ) be the nth 

matched pair, and where the superscripts Ref and Test indicate 
the oracle (ground-truth) and participant’s list of localizations, 
respectively. The root-mean-square error (RMSE) of the matched 
localizations is

a
N

x x y y
n

N

n n n n
2

1

2 21= − + −
=
∑ ( ) ( )Test Ref Test Ref

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature methodsdoi:10.1038/nmeth.3442

The expectation of a2 is the sum of the variance (precision) and 
the square of the bias (accuracy).

Independent computations convinced us that the bias is always 
negligible (unbiased estimators). Hence, the RMSE represents 
essentially the standard deviation of the errors, which is truly 
the precision of the estimator. Confusingly enough, in the specific 
lingo of the SMLM community, this term is called “accuracy” 
instead; we shall follow this improper terminology and call RMSE 
a localization accuracy.

Computation of the image quality using signal-to-noise ratio 
(SNR). To render an image, we let the contribution of each local-
ized molecule take the form of an additive 2D Gaussian circular 
function with a standard deviation ten times smaller than the 
standard deviation of the PSF. Correspondingly, we let the reso-
lution of the rendered image be ten times finer than that of the 
simulated camera with which we collected our synthetic data.

To compare the super-resolved image Itest to the oracle image 
Iref, we compute

SNR log ref

ref test
=

−
10 10

2

2
||

||
||

||
I

I I

Computation of the image resolution using the Fourier ring 
correlation (FRC). Fourier-ring correlation (FRC) was recently 
introduced as a method for measuring the image resolution in 
the SMLM context21,65. In the formalism of FRC, the set of posi-
tions is partitioned in two halves to determine the resolution. In 
our case, we populate the first half with Pref(f) and the second 
half with Ptest(f). The resolution is determined by applying the 
threshold T = 0.5 on the spectral correlation curve which typically 
decays monotonically66.

Parsing the localization files. Because every software has its 
own file format, unit, axis and coordinate convention, we asked 
the participants to report their results in a delimiter-separated 
values text file (typically CSV), where every localized position in 
a frame is stored as a single row in this file. For every software, 
we created a description file (XML) containing the information 
to univocally parse the localization. The description file contains  
the type of separator (comma, tab...) the unit of position  
(nm, pixel), the first row containing fluorophore, the x and y shift 
of the system coordinate (center of the pixel, top-left corner), 
the unit of shift, the shift in the numbering of the frame (0, 1)  
and finally the column numbers in which to find the infor-
mation: x, y, intensity and frame. With this simple procedure,  
we succeeded in reading all localization files without modifying 
any software.

Minimal bound on performance. We developed a rudimentary 
ImageJ plugin in Java, called CenterOfGravity, to determine a 
lower performance bound. This software detects candidate mol-
ecules by thresholding the local maximum of the band-pass filter; 
the accurate position is simply the center of gravity of a local 
neighborhood window centered on the candidates. Two software 
packages consistently failed to meet this criteria and were not 
further evaluated.

Usability. For the practitioner, the usability of the software 
is an important aspect for the daily work. The usability (USA) 
evaluation cannot be carried out quantitatively because it  
involves human behavior and multiple interaction factors 

between computer, data and users. Here, we follow the strategy  
of Carpenter et al.67 and evaluate each software using two sources 
of information: a questionnaire that was filled out by the soft-
ware developers and some testing of the software. The maximum  
usability grade is 5 and such a software fulfills the following 
requirements.

• � Accessibility: easy to find and to download from the  
web. Non-accessible softwares are assigned a usability  
grade of 0.

• � Open-source: free tool or an add-on of a free software  
(for example, ImageJ), accessible source code, no cost.

• � Installation: no dependency of specific hardware, no require-
ments of additional library, easy to install, binaries for  
multi-platforms, multiple operation systems, double-click 
type installation, fast learning curve.

• � Usage: user-friendly interface, intuitive parameters,  
documentation, interoperability.

• � Maintenance: continued, long-term support, feedback  
mechanism.

Computational time. At first sight, execution runtime would 
appear to be measurable objectively. Unfortunately, the participat-
ing packages all exhibit some degree of dependence upon specific  
hardware installations and code-development environments. 
This prevented us from running every software by ourselves. As 
a proxy, we determined the computational runtime (TIME) by 
analyzing the answers we received from the participants and by 
normalizing it by the power of their machine.

We asked the algorithm developers to report not only  
their own run-time values but also the main specifications of the 
run-time machine. There is a large variety of processors among 
the participants of this study. We therefore weighted the runtime  
by “normalized” coefficient: 0.75 for relatively slow desktop 
machine (e.g. 2.70 Ghz Intel Core i5), 1.25 for fast desktop 
machines (e.g. 3.40 Ghz Intel 4 cores).

For computers that are equipped with additional hardware, like 
graphical processing unit (GPU) usage, or field-programmable 
gate array (FPGA), we assign a penalty factor of 3.00. Another 
aspect we take into account is non comparable tasks between the 
various packages. Some software measures only the elapsed time 
of the localization task. Others measure the full processing task: 
loading frames in memory, localization and rendering. We com-
pensate for that by introducing an advantage factor of 0.75 and we 
apply it to software that measured the full processing task.

The runtime of every software was normalized by the above 
coefficients to yield a “normalized runtime” measure, Tn, which 
is mapped to a grade scale and clipped to between 0 and 5. We 
note that our grading should be regarded as a rough indicator of 
the software efficiency only.

Grading and ranking. For all criteria, JAC, ACC, SNR,  
FRC, USA and TIME, we attributed a normalized grade  
between 0 (worst case) and 5 (best case); see Supplementary Data 2.  
The values of criteria were normalized to impose an average of 
2.5 and a s.d. of 1.5, and they are clipped to 0 and 5.

We computed an overall performance score as a weighted sum 
of the criteria (average over the 3 data sets if necessary). The final 
rank is associated with either low-density imaging data sets or 
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with high-density imaging data sets. We normalize the criteria 
values to be in the interval [0,5] and define the final score as

s =
⋅ + ⋅ + ⋅ + + ⋅ +⋅ ⋅l l l l l l

l
JAC ACC SNR FRC USA TIMEJAC ACC SNR FRC USA TIME

JJAC ACC SNR FRC USA TIME+ + + + +l l l l l

We ran a principal-components analysis on the 4 criteria JAC, 
ACC, SNR and FRC showing that all criteria have an similar 
importance. We chose to compute an overall performance meas-
ure, as weighted sum, namely a score s, by choosing the following 
weights (see Supplementary Fig. 3).

Challenge organization. The organization of a world-wide chal-
lenge was an opportunity to get the attention of a large number 
of the developers working in different fields, including biology, 
biophysics and computer science. We broadly advertized the chal-
lenge trying to ensure coverage of most representative and well-
known software and also to attract newcomers to the field. The 
Localization Microscopy challenge (http://bigwww.epfl.ch/smlm) 
was presented at the IEEE ISBI conference, at San Francisco, in 
April 2013. The high participation rate of the developers reveals 
the importance of this study. The localization task was carried 
out by the software developers themselves with the exception of 
PeakSelector, Octane and CSSTORM, which were performed by 
experts. By having the authors or experts use their own algorithms, 
we believe we obtained the best performance possible. We initially 
provided them with training data sets that included ground-truth 
information, allowing them to choose the appropriate mode and 
to properly tune the parameters of their algorithms. We assumed 
that developers were at the same time most knowledgeable about 
their software, and keenest on cranking out the best performance, 
guided by the training data. We also offered the opportunity to sub-
mit three different runs for each data sets with different settings. 
Only four participants (a-livePALM, Auto-Bayes, SimpleSTORM 
and SOSplugin) have chosen this option. Finally, we observed that 
the results were very similar from one run to the next. This is sum-
marized in Table 2 and reported in Supplementary Data 2.

This comparative study was first released at the IEEE ISBI 
2013 Symposium (http://bigwww.epfl.ch/smlm/). Ever since, it 
has proved to be a valuable resource to developers and end users 
alike. The ISBI challenge has now turned into a permanent online 

challenge and is referred to in the Grand Challenge in Medical 
Image Analysis website (http://www.grand-challenge.org/).
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