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Trigonometric Interpolation Kernel to Construct
Deformable Shapes for User-Interactive Applications

Daniel Schmitter, Ricard Delgado-Gonzalo, and Michael Unser, Fellow, IEEE

Abstract—We present a new trigonometric basis function that
is capable of perfectly reproducing circles, spheres and ellipsoids
while at the same time being interpolatory. Such basis functions
have the advantage that they allow to construct shapes through a
sequence of control points that lie on their contour (2-D) or sur-
face (3-D) which facilitates user-interaction, especially in 3-D. Our
piecewise exponential basis function has finite support, which en-
ables local control for shape modification. We derive and prove all
the necessary properties of the kernel to represent shapes that can
be smoothly deformed and show how idealized shapes such as el-
lipses and spheres can be constructed.

Index Terms—3-D shape representation, deformable model,
piecewise exponential, splines.

I. INTRODUCTION

S HAPE representation and deformation is an ongoing re-
search topic in the fields where shapes need to be con-

structed, visualized, approximated or segmented. Related re-
search domains include shape modeling for industrial design
[1]–[3], or segmentation in biomedical imaging [4]–[6], such
as the design of active contour models [7]. Applications in-
volving suchmodeling are often user-interactive allowing a user
to modify the shape by directly interacting with it. Desirable
properties of such models are summarized as follows: 1) Intu-
itive user-interaction: the shape must be deformable by letting
a user to directly interact with its boundary in a simple manner;
e.g. dragging with a computer mouse the contour of a curve
or surface. 2) Local deformation: through user-interaction the
shape should only deform in the neighborhood where the inter-
action takes place. 3) Smooth deformation: a small perturbation
of the shape must result in a small deformation of the shape.
4) Reproduction of particular shapes: typically the model must
be able to represent particular types of idealized shapes (e.g.
polynomial curves, ellipses, spheres) and have good approxi-
mation properties. 5) Continuity: depending on the application
it can be required that the shape be everywhere differentiable.
6) Numerically stable implementation: usually this requires that
the underlying mathematical functions are well-defined. 7) Al-
lowing fast optimization: in semi-automatic applications, opti-
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mization schemes related to shape deformation might need to
be included in the model.
Because it is not always possible to satisfy all of the con-

straints, in practice usually a trade-off between the above
mentioned requirements needs to be done. Existing methods
can generally be categorized by either using a discrete or a
continuous-domain model. Discrete approaches use polygonal
meshes [9], [10] or subdivision-based models [11]–[13] to
represent shapes. They show high flexibility, but require a
large amount of parameters for shape modeling, which is a
drawback in optimization schemes. On the other hand, contin-
uous-domain models are mostly based on Bézier curves [16],
[17], spherical harmonics [18] or on compactly supported basis
functions such as B-splines [19]–[23] which have an explicit
analytical expression. However, B-splines are only able to
represent polynomial shapes [24], [25] and therefore, do not
allow for the construction of ellipses and spheres.
We present a new trigonometric basis function that enables

the parametric representation and deformation of idealized
shapes, such as ellipses and spheres. It allows to generate shape
models that meet all of the requirements listed above and is
particularly useful for simplified user-interaction because it is
compactly supported and verifies the interpolation property.
This means that the control points of the shape, which are
accessible to the user, directly lie on its boundary.
The main contributions of this article are the derivation of

the proposed interpolation kernel together with all the necessary
properties to construct deformable models for shape representa-
tion. The motivation behind this work is the construction of 2-D
[26], [7] and 3-D [27]–[30] active contour models for the seg-
mentation of sphere-like structures in biomedical images such
as roundish cells [30] or organs [31] (Fig. 1).

II. PARAMETRIC SHAPE REPRESENTATION

A. Planar 2-D Curves
We consider 2-D curves in the plane that are described by

two coordinate functions and with . It is pos-
sible to parameterize these coordinate functions by a suitable
linear combination of integer-shifted basis functions, which are
derived from a so-called generator . Such a parametric model
represents a 2-D curve as

(1)

where the are called the control
points. If is of compact (i.e., finite) support the curve can be
modfied locally by changing the position of a control point.
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Fig. 1. Reproduction and approximation of shapes. Top row: Reproduction of
the exact sphere using the proposed interpolatory (left) and the non-interpola-
tory function (right) from [8]. Bottom row: Segmentation of a brain volume.
On the left a rendering of a brain is shown that has been extracted from a 3-D
MRI scan as described in [31]. The 3-D brain structure has been segmented with
a deformable model using our interpolatory (middle) as well as the non-inter-
polatory (right) basis function [8]. In both cases the results are -diffeomor-
phic to the sphere, which has been used to initialize them. The blue dots are
the control points. They directly lie on the shape boundary for the interpolatory
scheme. The segmented brain shape on the bottom right shows that user-inter-
active shape modification is difficult and non-intuitive for the non-interpolatory
case, because it is unclear which part of the surface is affected by moving a con-
trol point.

The shapes that can adopt (e.g. polynomial, elliptic) depend
on the properties of the generator.

B. Tensor-Product Surfaces
The model (1) is extended to 3-D in order to construct sur-

faces that can be represented by a separable parameterization.
In this case a surface is parameterized by as

(2)

Displacing the control points in (1) and (2) respectively re-
sults in a continuous deformation of the corresponding shape.

III. CONSTRUCTION OF THE INTERPOLATOLR
In [8], we have proposed ellipse-reproducing basis functions

that are defined as , where is
the number of control points used to construct a given function
and is the 3-th order causal exponential B-spline defined in

the Fourier domain as . Thereby, the

vector specifies the poles of the B-spline.
We have shown that is of minimal support and can be either
smooth or interpolatory but not both at the same time. Finite sup-
port is important to implement fast optimization schemes [32].

A. Proposed Interpolator
Definition: Our piecewise exponential basis function is

expressed in its causal form as

(3)

where is a smoothing
kernel of unit support, is the zeroth-degree B-spline, and

are chosen such that the centered generator ,
satisfies the interpolation condition

(4)

Here, is the appropriate shifting constant to center the gen-
erator, the dot in the argument of a function is a placeholder
for its parameter, and is the Kronecker delta. Because
is of support equal to 3 and has unit support, the resulting
support of is equal to 4 and hence . The unique
weights and used to compute in (3) are computed by
solving (4) while additionally enforcing to be symmetric,
i.e., ; a property that is especially
convenient in practice. We find

and

The explicit expression of the proposed interpolator
is given by (5), shown at the bottom of the page,

where the interpolator is the centered (i.e., shifted) version

(5)
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of the causal generator . In the following we derive the prop-
erties of the proposed interpolator that are useful in practical
applications.

B. Reproduction of Trigonometric Functions

To be able to represent shapes that are deformations and trans-
lations of ellipses or spheres our generator must reproduce
sines and cosines, as well as constants.
Proposition 1: The interpolatory basis function repro-

duces constants as well as and independently
of the number of control points .
This result follows from [33, Proposition 2], where it was

shown that reproduction properties are preserved through con-
volution. In [8] it was shown that reproduces the functions
stated in Proposition 1 if and only if and hence, by (3)

inherits from its ellipse-reproducing properties.

C. Smoothness and Regularity

A fundamental requirement for the construction of the basis
function is that it must be everywhere differentiable. This is im-
portant w.r.t. shape deformation in order to avoid discontinuities
when perturbing an idealy reproduced shape, such as an ellipse
or sphere.
Proposition 2: The interpolator belongs to and has

bounded second derivatives.
Proof: We re-express (3) in terms of exponential B-splines

of different order as

(6)

where we have used the property that the convolution between
two exponential B-splines specified by and yields an-
other exponential B-spline specified by , i.e., the
union of the sets of poles defining the functions to be convolved.
Now we use the fact that the order of an exponential B-spline
corresponds to the number of poles defining it. The number of
times a B-spline is everywhere continuously differentiable is
equal to . From (6) we see that the lowest order of B-spline
involved in the construction of is and hence, due to
the linearity of the derivative . The second part of
Proposition 2 follows from the fact that (exponential) B-splines
of order are Hölder-continuous of order with bounded
derivatives [33].

D. Convergence and Order of Approximation

The order of approximation of the interpolator is of impor-
tance because it describes how fast an approximated function
or shape converges towards the object being interpolated.
Proposition 3: The interpolator converges to the (poly-

nomial) Keys interpolator [34] (which in computer graphics is
known as the Catmull-Rom spline [35]). It is given by

(7)

and has an order of approximation of . Thereby, and
are the cubic and quadratic polynomial B-splines.
Proof: We observe that as grows large, i.e.,

the 3rd order exponential B-spline defined by converges
to the 3rd order polynomial B-spline that is defined by its
poles . Since and

we obtain .

Furthermore, is able to approximate any curve with arbi-
trary precision by chosing sufficiently large [36].

E. Riesz Basis

It is desirable that the curves and surfaces given by (1) and
(2) are uniquely specified by their sequence of control points

and respectively. Therefore, the
shifted basis functions should be linearly
independent. Additionally, for practical reasons, the interpola-
tion process must be numerically stable. These requirements
are fullfilled if the generating function satisfies the Riesz-basis
condition [33].
Proposition 4: For the function generates a Riesz

basis, i.e., there exist two constants , such that

(8)

for all .
Due to space constraints we only outline a sketch of proof. It

is based on the fact that (8) is expressed in the Fourier domain
as , and that using (6) the
Fourier transform of is given by

. The complete proof is similar to the one
of [37, Theorem 6.2].

F. Affine Invariance and Partition of Unity

The basis function must reproduce shapes irrespective of
their orientation and position, i.e., they must be invariant to
affine transformations. The following proposition formalizes
this property for the 2-D case. The extension to 3-D is straight-
forward.
Proposition 5: The curves described by (1) are affine in-

variant, i.e.,

(9)

where is a matrix and is a 2-D vector.
From (9) we see that affine invariance holds if and only if

, which is called partition of unity. Fur-
thermore, from Proposition 1 we know that reproduces con-
stants. As a consequence and using the fact that is an inter-
polator the partition of unity is verified and hence, also affine
invariance.
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IV. REPRODUCTION OF ELLIPSES

A direct consequence of Proposition 1 is that allows us
to construct ellipses independently from the number of control
points . In this section we explicitly show how ellipses
can be reproduced using the proposed basis functions. Because
ellipses can be constructed by applying an affine transformation
to a circle and using the property of our model to be affine in-
variant it suffices to show that we can generate circles.
Proposition 6: Using the generator the unit circle is pa-

rametrized as

(10)

where is the -periodiza-
tion of , , , and .

Proof: Using Proposition 1 combining with the fact that
is an interpolator and is -periodic we write

(11)

Combining (11) with a similar derivation for proves
the claim.
Plots of the reconstructed trigonometric functions are shown

in Fig. 2 as well as the unit circle that has been reconstructed by
with the smallest possible number of control points

(Riesz-basis condition).

V. REPRODUCTION OF SPHERES

In this section, we outline our proposed construction of the
sphere. Its parameterization as a tensor-product surface (2) re-
sults as a corollary from Proposition 6.
Corollary 1: Using the generator the unit sphere is pa-

rametrized as

(12)

Fig. 2. Top left: The proposed trigonometric interpolator (blue), Keys inter-
polator (purple) and the non-interpolatory ellipse reproducing basis function
from [8] (yellow). Top right: the circle obtained with the parametric equation

. Bottom: (left) and (right) are
shown together with the basis functions (colored dashed lines) corresponding to

and , for and respectively.

where , and the control points are given by

(13)

The limits of the second sum in (12) are due to the fact
that and the support of is limited to the
interval . Therefore, we have

. The other terms in (12) follow from
inserting in (11). Plots of a reconstructed sphere
and a deformation of it are shown in Fig. 1, as well as a
comparison with shapes constructed with the non-interpolatory
basis function from [8].

VI. CONCLUSION

We present a new trigonometric kernel to construct de-
formable shape models. We show that the kernel satisfies the
necessary requirements needed for their construction such
as: interpolation condition, compact support, smoothness,
reproduction properties, Riesz-basis condition. The main
advantage of the proposed basis functions is that they are
smooth while also being interpolatory, therefore allowing
the control points of a constructed shape to lie directly on
the shape boundary; a feature that allows for intuitive shape
manipulation in user-interactive applications. We explicitly
show how to construct idealized shapes such as circles and
spheres. We illustrate the use of such models in demo-videos
showing 2-D and 3-D user-interactive deformable models
that are constructed using (10) and (12). They are avialble at
http://bigwww.epfl.ch/demo/interpolated-shapes/.
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