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Interpolatory basis functions are helpful to specify parametric curves or surfaces that can be

modified by simple user-interaction. Their main advantage is a characterization of the object

by a set of control points that lie on the shape itself (i.e., curve or surface). In this paper, we

characterize a new family of compactly supported piecewise-exponential basis functions that

are smooth and satisfy the interpolation property. They can be seen as a generalization and

extension of the Keys interpolation kernel using cardinal exponential B-splines. The proposed

interpolators can be designed to reproduce trigonometric, hyperbolic, and polynomial func-

tions or combinations of them. We illustrate the construction and give concrete examples on

how to use such functions to construct parametric curves and surfaces.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The representation of shapes using parametric curves and surfaces is widely used in domains that make use of computer

graphics [1,2] such as industrial design [3–5], the animation industry [6], as well as for the analysis of biomedical images [7–9].

In that context, it is often important to be able to interactively change the shape of the curve or surface. The spline-based repre-

sentation of parametric shapes has proven to be a convenient choice to include user interactivity in shape modeling due to the

underlying control-point-based nature of spline functions. If the basis functions are compactly supported, the change of position

of a control point modifies the shape only locally. This allows for a local control by the user. Commonly used basis functions

such as NURBS or B-splines have this locality property but are in general not interpolatory (except for example zeroth and first

degree B-splines, which are not smooth) [10]. This has the disadvantage that the control points do not directly lie on the contour

or surface of the shape. Especially in 3D applications, this can be inconvenient because it is no longer intuitive to interactively

modify complex shapes. More recently a method to construct piecewise polynomial interpolators has been presented in [11,12].

In this paper, we propose a new family of piecewise exponential basis functions that are interpolatory and are at least in C1.

They are compactly supported and their order can be chosen to be arbitrarily high. We show that they are able to reproduce

exponential polynomials which include the pure polynomials as a subset. This convenient property is particularly relevant for

the exact rendering of conic sections such as circles, ellipses, or parabolas, as well as other trigonometric and hyperbolic curves

and surfaces [13]. In its absence, one must resort to subdivision to tackle this aspect [14–18]. However, existing comparable

subdivision schemes usually rely on basis functions that are defined as a limit process and do not have a closed-form expression

[19].
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Our proposed family generalizes the piecewise-polynomial Keys interpolator [20–22] to higher degrees and can be seen as its

extension using exponential B-splines [23,24].

The paper is organized as follows. In Section 2 we give a brief review on exponential B-splines and their relation with dif-

ferential operators. This is needed to understand the reproduction properties of our proposed interpolators since they are based

on exponential B-splines. In Section 3 we present the proposed family of interpolators. We present the relevant properties and

prove that they reproduce exponential polynomials. We also provide a generic algorithm to construct specific interpolators that

belong to the proposed family. In Section 4 we give specific examples of interpolators and we explicitly show how parametric

curves and surfaces with desirable reproduction properties are constructed.

2. Exponential B-splines

In this section, we briefly review the link between exponential B-splines and differential operators which is crucial to under-

stand the reproduction properties of the proposed spline family. (For a more in-depth characterization of exponential B-splines,

we refer the reader to [23,24].) These reproduction properties are needed for the exact representation of elementary shapes (see

Section 4.3 for examples) and are automatically enforced by our construction.

2.1. Notations

We describe the list of roots α1, . . . , αN using the vector notation α = (α1, α2, . . . , αN). To assert the inclusion of a list of roots

α1 into another list α2, we use the set notation α1 ⊂α2. If α1 must be excluded from α2, we write α2�α1. Similarly, we denote

the union of the two lists of roots α1 and α2 by α1 ∪ α2. Likewise, we write αn ∈ α to signify that one of the components of α is

αn. Furthermore, the nth-order derivative operator is denoted by Dn = dn

dtn with D0 = I (identity operator).

2.2. Operator properties and reproduction of null-space components

Consider the generic differential operator L of order N

L = DN + aN−1DN−1 + · · · + a0I. (1)

Its characteristic polynomial with variable s ∈ C is given by

L(s) = sN + aN−1sN−1 + · · · + a0 =
N∏

n=1

(s − αn). (2)

By evaluating L(s) at s = jω, where j2 = −1, we obtain that the frequency response of the differential operator is L̂(jω) =∏N
n=1 (jω − αn). This allows us to factorize the operator L as

Lα := L = (D − α1I)(D − α2I) · · · (D − αNI). (3)

It follows that the nullspace, which contains all the solutions of the homogenous differential equation Lα{ f0}(t) = 0, is given

by

NLα
= span{tn−1eα(m)t}m=1,...,Nd;n=1,...,n(m)

, (4)

where the Nd distinct roots of the characteristic polynomial are denoted by α(1), . . . , α(Nd) with the multiplicity of α(m) being

n(m) and
∑Nd

m=1
n(m) = N. There exists a unique causal Green’s function ρα (ρα(t) = 0 for t < 0) associated to the operator Lα that

satisfies Lα{ρα}(t) = δ(t), where δ is the Dirac distribution.

Its explicit form is

ρα(t) =
Nd∑

m=1

n(m)∑
n=1

cm,n
tn−1
+

(n − 1)!
eα(m)t , (5)

with suitable constants cm, n. We see that (5) is a causal exponential polynomial. The discrete counterpart of Lα is denoted by �α.

It is specified by its symbol �̂α(z) = ∏N
n=1 (1 − eαn z−1). An exponential B-spline is then defined as βα(t) = �α{ρα}(t), which is

equivalent to the Fourier-domain definition

β̂α(ω) = �̂α(ejω)

L̂α(jω)
=

n∏
k=1

1 − eαk−jω

jω − αk

. (6)

Since �α is defined on the integer grid, the exponential B-splines reproduce the causal Green’s function (5) associated to Lα

ρα(t) = �−1
α {βα}(t) =

+∞∑
k=0

pα[k]βα(t − k), (7)

where pα is a unique causal sequence as has been shown in [23]. Extrapolating the Green’s function (5) for t < 0 is equivalent

to extrapolating the sum in (7) for negative k, which results in the reproduction of an exponential polynomial. More generally, it

can be shown that βα is able to reproduce any component P (t) ∈ N that is in the null space of L = Lα.
0 L
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3. Construction of interpolatory basis functions

3.1. Desirable properties of the basis functions

We want to construct an interpolator based on a suitable linear combination of exponential B-splines of different orders. The

following characteristics should be met:

• Smoothness

We want the interpolation functions to be at least continuously differentiable and, hence, the minimum order of the B-spline

involved is 3 (i.e., degree 2).

• Support

The interpolator should be compactly supported and the support of the function should not be larger than the support of the

B-spline of highest order N involved. Therefore, the support of the resulting function is an integer and is equal to N.

• Symmetry

We want the interpolator to be symmetric. This can be achieved if the non-zero poles of the exponential spline are grouped

in pairs of opposite sign [23]. Furthermore, except for the highest-order B-spline involved, the B-splines in the sum have to

come in pairs and be shifted accordingly.

• Interpolation condition

The constructed function has to satisfy the interpolation condition

ϕ(t)|t=k = δ[k], k ∈ Z, (8)

where δ[k] represents the Kronecker delta.

• Reproduction of exponential polynomials

We are interested in representing shapes that do not only rely on polynomial but also on trigonometric and hyperbolic coor-

dinate functions. Thus, the interpolators must reproduce exponential polynomials.

3.2. Characterization of the family of interpolators

Taking all of the above considerations into account we characterize an Nth order smooth and piecewise exponential interpo-

lator as

ϕ(t) := λNβαN

(
t + N

2

)
+

N−1∑
n=n0

λn

(
βαn

(
t + N

2

)
+ βαn

(
t − N

2
+ n

))
, (9)

where αn0
has at least n0 = 3 poles (smoothness constraint) and N ≥ 2(n0 − 1) is an integer that defines the highest-order

exponential B-spline involved. Furthermore, in order for ϕ to reproduce exponential polynomials, we enforce αn ⊂αN for

n ∈ [n0, N − 1] (see Section 3.4.1). Here, the notation αn implies that the list of poles αn contains n elements. Hence, using the

fact that the support of an exponential B-spline is equal to the number of poles that specifies it, we see that ϕ is of support equal

to N.

The weights λn are computed by making use of the symmetry of the interpolator, i.e., ϕ(t) = ϕ( − t) and by imposing the

interpolation constraints (8), which we achieve by solving the system of equations⎧⎪⎪⎨
⎪⎪⎩

1 = ϕ(0)
0 = ϕ(1)
...
0 = ϕ(�N/2	).

(10)

From (10) we see that, N/2 (even case) respectively N/2 + 1 (odd case) interpolation constraints have to be met to construct

the function. This follows from the fact that ϕ can only be non-zero within the interval [−N/2, N/2]. If N is even, N/2 is integer

and since the interpolator is smooth ϕ(N/2) = 0 and hence, does not explicitly need to be imposed in (10).

3.3. Construction of basis functions

The proposed interpolatory basis functions are constructed as follows:

1. Define an exponential spline type with desirable reproduction properties; that is, select the list αn0
that contains the featured

poles and whose total number of elements is n0 ≥ 3.

2. Given αn0
, N must be no smaller than Nmin = 2(n0 − 1). This restriction is directly related to the interpolation constraints.

3. The Nth-order interpolator is given by (9), where αn = αn0
∪ 0n−n0

with n > n0 and 0K is the K element vector filled with

zeros.

4. The weights λn can be computed by solving (10).



56 D. Schmitter et al. / Applied Mathematics and Computation 272 (2016) 53–63
The system (10) is overdetermined when N > Nmin . In that case, the weights λn for (N − Nmin) terms in (9) can be chosen

arbitrarily (see Section 4.3 for examples). Conversely, we see that, in order to satisfy the interpolation constraints for a given order

N, the smallest possible number of poles is n0 = �N/2	 + 1. Otherwise, when the system of equations is overdetermined, one can

always construct αn′
0

= αn0
∪ 0(�N/2	+1)−n0

with n′
0

poles. The resulting exponential B-spline βα
n′

0

preserves the reproduction

properties of βαn0
but has increased order of approximation and regularity [23] (see Section 3.4). Based on our experiments we

conjecture that the system of equations (10) always has a solution.

3.4. Reproduction properties and regularity

3.4.1. Reproduction of exponential polynomials

Proposition 1. The interpolator defined by (9) reproduces exponential polynomials up to degree q and exponent α if and only if αn0

contains q + 1 copies of α.

Proof. We first show that exponential polynomials can be reproduced with exponential B-splines and then conclude that ϕ
preserves these reproduction properties.

An exponential polynomial of exponent α and degree q can always be written as a linear combination of exponential mono-

mials Qn
α(t) = eαttn for n = 0, . . . , q. The exponential polynomial is expressed as

Pq
α(t) =

q∑
k=0

akeαttk. (11)

For n ≥ n0 in (9) and n ∈ [n0, N], every exponential B-spline βαn is defined through a list αn that contains αn0
. Furthermore,

from [23] we know that, for α ∈ αn0
of multiplicity q + 1, there exist sequences pn such that

eαttn =
∑
k∈Z

pn[k]βαn0
(t − k) (12)

for n = 0, . . . , q, which is equivalent to saying that βαn0
reproduces exponential monomials up to degree q and exponent α. The

shifted exponential B-splines in (9) also have the same reproduction property. By combining (11) and (12) and considering an

arbitrary shift m, we see that

Pn
α(t − m) =

n∑
k=0

akQk
α(t − m)

=
n∑

k=0

ak

∑
l∈Z

pk[l]βαn0
(t − m − l)

=
n∑

k=0

akeα(t−m)(t − m)k

= eαt
n∑

k=0

ake−αm
k∑

l=0

(
k

l

)
tl( − 1)k−lmk−l, (13)

which is a linear combination of polynomials in t of degree up to n that are multiplied by eαt. Thus, we can collect all the factors

multiplying tk and rewrite them as bk to express (13) as

Pn
α(t − m) = eαt

n∑
k=0

bktk := Pn
α,m(t) (14)

for n = 0, . . . , q, which is also an exponential polynomial of exponent α and degree n.

In the next step, we first show that exponential polynomials can be reproduced if ϕ is composed of exponential B-splines of

identical degree and containing the same poles. Then we conclude that, because the reproduction of exponential polynomials is

preserved through convolution, ϕ also reproduces these exponential polynomials.

By (12) and (14) and using exponential B-splines of the same degree, we write

p∑
k=0

ak

∑
l∈Z

pk[l]

(
λNβαn0

(
t + N

2
− l

)
+

N−1∑
n=�N/2	+1

λn

(
βαn0

(
t + N

2
− l

)
+ βαn0

(
t − N

2
+ n − l

)))

= Pp

α,− N
2

(t)

(
λN +

N−1∑
n=�N/2	+1

λn

)
+

N−1∑
n=�N/2	+1

λnPp

α, N
2 −n

(t) (15)

for p = 0, . . . , q, which is also an exponential polynomial with the same degree and exponent as its constituents. �

The next step of the proof relies on a proposition originally stated by Unser and Blu in [23], which we recall here for the sake

of completeness.
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Proposition. (Unser and Blu [23]) Let ψα be a function that reproduces the exponential polynomials in span{eαt , . . . , t peαt}.

Then, for any compactly supported function ψ such that
∫
R
ψ(t)e−αt dt �= 0, the composite function ψ ∗ ψα also reproduces

these exponential polynomials (where ∗ denotes the convolution product).

Using this proposition, we deduce that, for n ∈ [n0, N], the convolution product

βαn\αn0
∗ βαn0

(16)

preserves the exponential reproduction properties of βαn0
. Note that in (16), the term βαn0

\αn0
= 1.

From the definition of the interpolatory basis function (9) and by combining (15) and (16), we obtain

p∑
k=0

ak

∑
l∈Z

p̃k[l]ϕ(t − l) =
p∑

k=0

ak

∑
l∈Z

p̃k[l]

(
λNβαN

(
t + N

2
− l

)
+

N−1∑
n=�N/2	+1

λn

(
βαn

(
t + N

2
− l

)
+βαn

(
t − N

2
+ n − l

)))

=
p∑

k=0

ak

∑
l∈Z

p̃k[l]

(
λN

(
βαN\αn0

∗ βαn0

)(
t + N

2
− l

)

+
N−1∑

n=�N/2	+1

λn

(
βαn\αn0

∗ (βαn0
+ βαn0

( · −N))

)(
t + N

2
+ n − l

))
, (17)

where p̃k is a suitable sequence of coefficients. Therefore, from (17) we see that ϕ also reproduces the exponential polynomials

given by (15) up to degree q and exponent α, where α ∈ αn0
is of multiplicity q + 1.

3.4.2. Regularity

The regularity of the proposed interpolator depends on the exponential B-spline of lowest order that is involved in the con-

struction of ϕ. Hence, ϕ belongs to Cn0−2.

3.4.3. Order of approximation

If the poles of the constructed interpolators are of the form α = πx
M , x ∈ C, and if M is related to the number of control

points, then the definition of the interpolator (9) implies that, as M → ∞, ϕ converges to piecewise-polynomial interpolators

that have an (n0)th order of approximation (by the Strang-Fix equivalence [25,26]). Such interpolators are of special interest for

the construction of particular shapes (see Section 4.3).

In the following, we give concrete examples of interpolatory basis functions that are derived from (9).

4. Examples of interpolators and applications

4.1. Polynomial bases

If the pole vector entirely consists of zeroes, the basis function is a sum of polynomial B-splines and hence is piecewise

polynomial. For example, the 4th-order basis corresponds to the Keys interpolation kernel [20]. These basis functions are all

symmetric. Some examples are shown in Fig. 1.

4.2. Trigonometric and hyperbolic bases

Trigonometric and hyperbolic functions take special relevance within computational geometry. Exponential splines that are

able to reproduce (hyberbolic) sines and cosines can be used to construct the desired interpolatory basis functions. Because the

exponents involved in the representation of (hyperbolic) sinusoidal functions come in pairs of opposite sign, the resulting basis

functions are symmetric as a consequence of the symmetry of their elementary constituents. Some hyperbolic and trigonometric

interpolators are shown in Fig. 2.

4.3. Larger support interpolators

For the sake of completeness, we also provide an example of how to construct interpolators by choosing n0 and N such

that the corresponding system of equations is overdetermined (see Section 3.3). Such situations arise if either for a given αn0

a corresponding N > Nmin = 2(n0 − 1) is chosen or if for a given N a corresponding n0 < �N/2	 + 1 is chosen. In both cases,

the weights λn for (N − Nmin) terms in (9) can be chosen arbitrarily. Our experiments show that such interpolators that are

constructed by solving an overdetermined system of equations tend to oscillate more than their “smallest” support counterparts.

Examples are shown in Fig. 3 (middle and right), where we constructed 6th- and 7th-order interpolators.

4.3.1. Applications

In this section, we show how idealized parametric curves and surfaces (such as ellipses and ellipsoids) can be reproduced

using the proposed interpolators. Such shapes can be constructed independently of the number of control points, which makes

them particularly useful for deformable models where, when starting from an initial configuration, it is desirable to approximate

shapes with arbitrary precision [8,9,13,27]. We construct symmetric interpolators that have the smallest support given αn0
as

described in Section 3.3.
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Fig. 1. Examples of polynomial-reproducing interpolators. Their poles are all equal to zero and their respective order corresponds to N = 4, . . . , 7, and is equal

to their support. The basis function that corresponds to N = 4 represents the Keys interpolator [20].
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Fig. 2. Hyperbolic (left) and trigonometric (right) interpolators. Left: 4th-order interpolating functions are shown that were constructed with different lists of

poles indicated by α. Right: Trigonometric interpolators. The two interpolators correspond to 4th and 5th order with αn0
= (0,

2jπ
3

,− 2jπ
3

).
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Fig. 3. Larger support interpolators. Left: Hyperbolic interpolators; 5th-order interpolators are shown that were constructed with different lists of poles α.

Regarding the number of elements in α which is equal to 3, their “smallest” support counterparts (which are shown in Fig. 2) are constructed with Nmin =
2(3−1) = 4, whereas here N = 5 was chosen. Middle and right: Effect of including lower-order B-splines in the construction of the interpolating function. If

the order of the interpolator is N, then the lowest-order B-spline involved in its construction must be at least n = �N/2	 + 1 (blue curves). If splines of lower

order than n = �N/2	 + 1 are used in the construction, the interpolating function shows an oscillatory behavior (red and magenta curves respectively). Here

we have used N = 6 (middle) and N = 7 (right) respectively and hence, the required minimum-order B-spline involved corresponds to n = n′
0 = �6/2	 + 1 =

�7/2	 + 1 = 4 and the corresponding list of poles is α = (0, 0, 0, 0) = αn′
0

= αn0
∪ 0(�N/2	+1)−n0

= αn0
∪ 04−3 = (0, 0, 0) ∪ (0). In the construction of the red and

magenta interpolators we have additionally used a B-spline of order n = 3 which corresponds to α = (0, 0, 0) = αn0
. (For interpretation of the references to color

in this figure, the reader is referred to the web version of this article.)
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4.4. Reproduction of parametric curves

4.4.1. Reproduction of ellipses

Here we explicitly show how ellipses are reproduced within our framework. We consider the lowest order, which is N = 4.

The condition for being able to reconstruct an ellipse with M control points is αn0
= α3 := (0,

j2π
M ,− j2π

M ). Therefore, by applying

(9), the interpolator is

ϕ(t) = λ4βα4
(t + 2) + λ3

(
βα3

(t + 2) + βα3
(t + 1)

)
(18)

with α4 = (0, 0,
j2π
M , − j2π

M ) and the λn which are found by solving (10). Specifically, we end up with the system of equations{
0 = λ4βα4

(1) + λ3

(
βα3

(1) + βα3
(0)

)
= λ4βα4

(1) + λ3βα3
(1)

1 = λ4βα4
(2) + λ3

(
βα3

(2) + βα3
(1)

)
= λ4βα4

(2) + 2λ3βα3
(2)

(19)

whose solution is

λ3(M) =
π2 csc

(
π
M

)
csc

(
2π
M

)(
M − 2π csc

(
2π
M

))
M2

(
M sec

(
π
M

)
− π csc

(
π
M

)) (20)

and

λ4(M) =
π3 sec2

(
π
M

)
M2

(
M tan

(
π
M

)
− π

) . (21)

To reproduce cos ( 2π
M · ), we take advantage of the interpolation property which yields

cos

(
2π

M
t

)
=

∑
k∈Z

ej 2π
M k + e−j 2π

M k

2
ϕ(t − k), (22)

where the coefficients are the integer samples of the curve. Normalizing the period of the cosine and using the M-periodized

basis functions

ϕM(Mt − k) =
+∞∑

n=−∞
ϕ(M(t − n) − k), (23)

we express the cosine as

cos (2πt) =
M−1∑
k=0

cos

[
2πk

M

]
ϕM(Mt − k). (24)

In a similar way we obtain

sin (2πt) =
M−1∑
k=0

sin

[
2πk

M

]
ϕM(Mt − k). (25)

Plots of the trigonometric functions are shown in Fig. 4 as well as the circle obtained through the parametric equation r(t) =
( cos (2πt), sin (2πt)).

Due to the choice of αn0
, we see that, as we increase the number M of control points, ϕ converges to the 4th-order polynomial

basis, which corresponds to the Keys interpolator.

4.5. Reproduction of parametric surfaces

4.5.1. Sphere

We can also reproduce spheres or ellipsoids by using the basis function defined in (18). Similar to [9], a possible parameteri-

zation of the sphere is given by

σ(u, v) =

⎛
⎝x(u, v)

y(u, v)
z(u, v)

⎞
⎠ =

⎛
⎝cos (2πu) sin (πv)

sin (2πu) sin (πv)
cos (πv)

⎞
⎠

=
M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕM1
(M1u − k)ϕ(M2v − l) (26)
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Fig. 4. The functions cos (2π t) (top left) and sin (2π t) (top right) are shown together respectively (blue curves) with the underlying shifted basis functions

(dashed curves) that correspond to M = 3 and the shift k. Note that, in the construction of the sine, the contribution of the basis function corresponding to

the shift k = 0 is zero because in (25) it is computed through sin
[

2πk
M

]
ϕM(Mt − k) = 0 · ϕM(Mt) = 0. Bottom: Circle obtained with the parametric equation

r(t) = ( cos (2πt), sin (2πt)). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
where u, v ∈ [0, 1] and the control points are given by

c[k, l] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos

[
2πk

M1

]
sin

[
2π l

2M2

]

sin

[
2πk

M1

]
sin

[
2π l

2M2

]

cos

[
2π l

2M2

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

We choose M1 = 2M2 because the term that depends on u is 1-periodic while the term that depends on v is 2-periodic. The fact

that l only needs to run from −1 to M2 + 1 is due to the support of ϕ, which is equal to 4. The result is shown in the top-left image

of Fig. 5. For comparison, we are also displaying the solutions obtained by the non-interpolatory scheme described in [9]. While

the displayed shapes are the same in both cases, the essential difference is that the control points of our proposed interpolators

lie on the surface; a property that is useful if the shape needs to be modified interactively. Because each control point is associated

to a limited number of compactly supported basis functions, moving its location results in a local modification of the surface.

4.5.2. Torus

The torus can be reproduced in a way similar to the sphere. Again, using the same basis function of our working example (18)

and the standard parameterization of the torus, we obtain

σ(u, v) =

⎛
⎝x(u, v)

y(u, v)
z(u, v)

⎞
⎠ =

⎛
⎝(R + r cos (2πv)) cos (2πu)

(R + r cos (2πv)) sin (2πu)

r sin (2πv)

⎞
⎠

=
M−1∑
k=0

M−1∑
l=0

c[k, l]ϕM(Mu − k)ϕM(Mv − l), (28)
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Fig. 5. Shape comparison. Interpolatory (left, blue) and non-interpolatory control points (right, green). The basis functions that were used to construct the non-

interpolatory surfaces correspond to the ones presented in [13]. For the non-interpolatory surfaces it is difficult and non-intuitive to associate a given control

point to the specific surface patch that is modified when moving the control point through user-interaction. (For interpretation of the references to color in this

figure, the reader is referred to the web version of this article.)
where u, v ∈ [0, 1] and the control points are obtained by sampling as

⎛
⎝(R + r cos (2πv)) cos (2πu)

(R + r cos (2πv)) sin (2πu)

r sin (2πv)

⎞
⎠∣∣∣∣

u= k
M ,v= l

M

. (29)

The radii R and r of the torus can be chosen in an arbitrary way, without affecting the shape but only the size of the surface.

The resulting surface is shown in the middle-left image in Fig. 5.
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4.5.3. “Figure 8” immersion

The so-called “figure 8” immersion has a slightly more complicated parameterization than the two previous examples. It is

given by

σ(u, v) =

⎛
⎝x(u, v)

y(u, v)
z(u, v)

⎞
⎠ =

⎛
⎝(r + cos (πu) sin (2πv) − sin (πu) sin (4πv)) cos (2πu)

(r + cos (πu) sin (2πv) − sin (πu) sin (4πv)) sin (2πu)

sin (πu) sin (2πv) + cos (πu) sin (4πv)

⎞
⎠

=

⎛
⎜⎜⎝

r cos (2πu) + 1

2
sin (2πv)

(
cos (πu) + cos (3πu)

)
− 1

2
sin (4πv)

(
sin (3πu) − sin (πu)

)
r sin (2πu) + 1

2
sin (2πv)

(
sin (πu) + sin (3πu)

)
− 1

2
sin (4πv)

(
cos (πu) − cos (3πu)

)
sin (πu) sin (πv) + cos (πu) sin (4πv)

⎞
⎟⎟⎠ (30)

where u, v ∈ [0, 1] and r > 2 is a constant. Hence, we notice that the frequencies associated with the parameter u are π , 2π ,

and 3π , whereas the frequencies associated with v are 2π and 4π . Therefore, we construct two interpolators, ϕ1 with αϕ1
=

( jπ
M ,− jπ

M ,
j2π
M , − j2π

M ,
j3π
M , − j3π

M ) and ϕ2 with αϕ2
= ( j2π

M , − j2π
M ,

j4π
M , − j4π

M ).

The expression for the tensor-product spline surface is then given by

σ(u, v) =
M1−1∑
k=0

M2−1∑
l=0

c[k, l]ϕ1,M1
(M1u − k)ϕ2,M2

(M2v − l), (31)

where ϕ1 and ϕ2 have been periodized and c[k, l] = σ(u, v)
∣∣

u=k,v=l
.

The resulting surface is shown at the bottom left in Fig. 5.

5. Conclusion

We have characterized a new family of compactly supported interpolators that are based on exponential B-splines. We have

shown that they reproduce exponential polynomials while being interpolating. We have illustrated how different members of

the family, such as polynomial, trigonometric, or hyperbolic interpolators of different orders can be constructed according to

desirable reproduction properties. We have also shown how the proposed interpolators can be used to represent parametric

curves and surfaces. The interpolation property ensures that the control points lie on the curve or surface itself. This property is

particularly useful for shape representation or manipulation in user-interactive applications. The proposed family of interpolat-

ing functions can be seen as a generalization of the polynomial Keys interpolator to higher orders as well as its extension with

respect to the reproduction of exponential polynomials.
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