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Figure 1: Smooth modeling of shapes with spherical toplogy. The continuous deformation of the sphere into the Gargoyle is shown in the top
row where a wood texture has been added to the surface. The shapes in the bottom row consist of a single surface patch and are constructed
through the interactive deformation of the sphere. The interpolating structure of the model allows us to intuitively design surfaces that can
adopt shapes beyond the classical spherical topology. Our framework is inherently smooth, which facilitates natural texturing.

Abstract

Existing shape models with spherical topology are typically de-
signed either in the discrete domain using interpolating poly-
gon meshes or in the continuous domain using smooth but non-
interpolating schemes such as NURBS. Polygon models and sub-
division methods require a large number of parameters to model
smooth surfaces. NURBS need fewer parameters but have a com-
plicated rational expression and non-uniform shifts in their formu-
lation. We present a new method to construct deformable closed
surfaces, which includes the exact sphere, by combining the best of
two worlds: a smooth and interpolating model with a continuously
varying tangent plane and well-defined curvature at every point on
the surface. Our formulation is simpler than NURBS while it re-
quires fewer parameters than polygon meshes. We demonstrate the
generality of our method with applications ranging from intuitive
user-interactive shape modeling, continuous surface deformation,
reconstruction of shapes from parameterized point clouds, to fast
iterative shape optimization for image segmentation.
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1 Introduction

The representation of shapes with spherical topology is an ongoing
research topic in computer graphics. The reason is the abundant
need of closed genus-zero surfaces in industrial, architectural, and
animation design as well as biomedical imaging. Designing spher-
ical models that are simultaneously optimal with respect to several
different shape characteristics still remains a challenge. Depending
on whether an application involves user interaction, shape defor-
mation or optimization schemes, different aspects of a model are
more important than others. On one hand, in user-interactive appli-
cations, a fundamental requirement is the possibility to intuitively
manipulate the shape. Typically, this presupposes an easy way to
directly interact with the surface as well as to control shapes lo-
cally. This task is naturally linked to the topic of surface defor-
mation. On the other hand, an application might involve shape de-
formation as an optimization process. For example, in real-time
shape recognition or segmentation, this requires the fast evaluation
of derivative- and integral-based quantities in iterative settings. Fur-
ther, the smoothness of the surface and the number of parameters
that are involved can also play an important role. Usually, it is im-
possible to apply a model that is optimal with respect to all of these
requirements. In practice, a compromise is made favoring the most
important needs for a specific application. We present a new model
to construct deformable shapes with spherical topology that meets
all of the above mentioned requirements.

2 Related Work

The most widely used technique to construct deformable spheres
in the continuous domain is with NURBS [Piegl and Tiller 2010].
NURBS surfaces are based on polynomial B-splines and are defined
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by a set of control points which allow local shape control. The pri-
mary reason for using the rational NURBS expression instead of
the non-rational polynomial B-splines is because NURBS are able
to exactly reproduce conic sections. Conceptually, this is equivalent
to the reproduction of trigonometric functions, which is a necessary
requirement for constructing spheres. A drawback of NURBS is
their rational form which leads to complicated expressions of re-
lated integrals and derivatives [Manni et al. 2011]. Furthermore,
the NURBS formulation depends on additional weight parameters
which have no intuitive interpretation. Other constructions to ap-
proximate sphere-like surfaces based on B-splines have been stud-
ied in [Dierckx 1984], whereas in [Delgado-Gonzalo et al. 2013] an
exact approach using exponential splines is proposed. Other mod-
els use rational Bézier surfaces [Prautzsch et al. 2002], which are
also related to splines.

Popular discrete methods are based on polygon meshes [Botsch
et al. 2010]. With these models, it is possible to represent shapes
of arbitrary topology. Polygon models are interpolating with the
control points coinciding with the vertices of the mesh; this im-
plies that the shape is modified by points which directly lie on the
boundary of the object. Related to polygon models are subdivision
methods used to construct surfaces [Doo and Sabin 1978; DeRose
et al. 1998; Catmull and Clark 1998; Stam and Loop 2003]. They
are characterized by refinement operations that are iteratively ap-
plied to a set of points leading to a continuous limit surface with a
certain regularity. One limitation of polygon and subdivision meth-
ods is that they require a large number of parameters which can be
a challenge when computational speed is required.

3 Spherical Parameterization
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Figure 2: Top row: Reconstructed sphere with the interpolatory
control points shown in light green (left). The yellow region (mid-
dle) that is affected by moving a single control point (blue) is shown
(right). It corresponds to a patch of size 4 × 4, which is due to
the support of the generator ϕM . Bottom: Closed and smooth de-
formable sphere. If no smoothness conditions are imposed the sur-
face becomes non-differentiable at the poles (left). If no closeness
conditions are imposed the surface looses its spherical topology
(middle) when deforming. On the right the closed and deformed
sphere is shown with smoothly varying tangent planes at the poles.

We construct the parametric surface as a tensor product using a
weighted sum of integer shifts of a non-rational generator function
ϕ. The surface is expressed as

σ(u, v) =

M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕM1,per(u− k)ϕM2(v − l),

where M1 and M2 are the number of control points, c[k, l] =

(cx[k, l], cy[k, l], cz[k, l]) in the u and v-direction, ϕM1,per =∑+∞
n=−∞ ϕM1(t −M1n) is the M1 periodized basis function and

the explicit expression of ϕM is given by (1). The limits in the dou-
ble sum are due to the compact support of ϕM . From [Schmitter
et al. 2015], we know that ϕM exactly reproduces trigonometric
functions. Using the property that ϕM also is an interpolator, the

exact sphere is parameterized as σ(u, v) =

cos(2πu) sin(πv)
sin(2πu) sin(πv)

cos(πv)
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 and u, v ∈ [0, 1].

Main Result: Smoothness and Closeness Conditions at the
Poles. Since ϕ ∈ C1, continuity is guaranteed nearly everywhere
on the surface as long as the control points do not overlap. How-
ever, for the deformed sphere, smoothness is not guaranteed at its
poles unless we take appropriate measures. In [Dierckx 1984], it
was shown that continuity at the poles is ensured if a deformable
sphere is constructed with continuously varying tangent planes at
these points. This condition is mathematically expressed as

∂σ

∂v
(u, v)

∣∣
v=0

= T 1,N cos(2πu) + T 2,N sin(2πu), (2)

for the north pole and

∂σ

∂v
(u, v)

∣∣
v=1

= T 1,S cos(2πu) + T 2,S sin(2πu), (3)

for the south pole, where T 1,N , T 2,N , T 1,S , and T 2,S are vector
parameters that can be freely chosen. Both sides of the equality
sign in (2) can independently be simplified; we end up with the
condition

c[k,−1] =
T 1,N cos

(
2πk
M1

)
+ T 2,N sin

(
2πk
M1

)
M2ϕ′2M2

(1)
+ c[k, 1]. (4)

Similarly, (3) is simplified to

c[k,M2+1] = c[k,M2−1]−
T 1,S cos

(
2πk
M1

)
+ T 2,S sin

(
2πk
M1

)
M2ϕ′2M2

(1)
.

(5)
The tangent plane at the poles is then spanned by the vectors T 1,N ,
T 2,N and T 1,S , T 2,S , respectively. Next, we make sure that the
sphere remains closed when deforming in order to maintain spheri-
cal topology. Again, special attention needs to be paid to the poles;
they have to remain being interpolated, i.e., closed. Conceptually,
this requires that all the circles of longitude of the original sphere
keep originating and ending at the poles of the surface. We denote
by cN and cS the north and south pole. Now, we can establish the
relation

σ(u, 0) = cN = c[k, 0] (north pole),
σ(u, 1) = cS = c[k,M2] (south pole),

∀k ∈ [0 . . .M1−1]. In Figure 2, we illustrate the interpolation and
smoothness conditions on the poles.

4 Results and Applications

Intuitive Interactive Modeling. A crucial aspect in interactive
shape modeling is that the modeling process must be intuitive. Stan-
dard modeling applications allow a user to modify a shape by drag-
ging its control points with the mouse in order to displace them. If
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the control points directly lie on the surface of the shape, the mod-
eling task is significantly simplified. This is the case for polygon
models but at the expense of dealing with smooth shapes. On the
other hand, NURBS allow for the construction of smooth shapes,
but the control points do not interpolate the shape. This makes the
modeling task less intuitive. Local shape control is difficult as the
surface becomes more complex because it is no longer clear which
part of the surface is affected by a specific control point. Our pro-
posed construction solves this problem since ϕM satisfies the inter-
polation condition and is also smooth. Hence, even if the modeled
surface is of great complexity, the modeling process remains intu-
itive and simple because the control points always lie on the bound-
ary of the shape itself. With relatively few control points, complex
structures are easily constructed and modified. Furthermore, due to
the compact support of ϕM , local shape control is guaranteed. In
Figure 3, we show examples of the use of our framework in an in-
teractive modeling environment. Final renderings, where texture is
added to a shape are achieved without discretization artifacts since
the underlying nature of the structure is smooth, independently of
the number of control points chosen (Figure 1, bottom row).
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Figure 3: Implementation of the framework in a shape modeling
environment. Different shapes are interactively designed starting
from a sphere (from left to right). The interpolatory control points
allow to easily model surfaces that can adopt shapes beyond “tra-
ditional” spherical topology, such as the mug and rocket.

Shape Interpolation. When dealing with a parameterized point
cloud whose points correspond to the samples of a surface with
spherical topology, our formulation allows for an immediate re-
construction of the smooth shape. In this case, for each point
p ∈ R3 of the point cloud, a pair (uk, vl) of coordinates is as-
signed in the parameter domain and we can establish the relation
σ(uk, vl) = pk,l = c[k, l]. For a fixed number of points, M1,
M2, in the u- and v-direction respectively, the parametric coordi-

nates for the normalized parametric domain, i.e., u, v ∈ [0, 1], are
given by uk = k

M1
and vl = l

M2
. The resulting continuously de-

fined surface σ(u, v) is immediately reconstructed since it is fully
specified by its control points subject to the smoothness and pole-
interpolation conditions described above. An example is shown in
Figure 4.

Figure 4: Interpolation of a parameterized point cloud. The di-
nosaurs (middle and right) are smooth reconstructions obtained by
interpolating the point cloud on the left. Our surface construction
is affine-invariant, which implies that a rotation of a shape is simply
obtained by rotating the point cloud.

Smooth Modeling at Arbitrary Resolution. Because our con-
struction of σ is inherently smooth the tangent plane and Gaus-
sian curvature are everywhere well-defined even when there are
few control points. This can be an advantage to construct textured
models with few parameters; for example, in applications involv-
ing real-time rendering. As an example, we have parameterized the
point cloud of the Gargoyle model using the algorithm described
by [Praun and Hoppe 2003]. This allows us to reconstruct a smooth
surface by interpolating the points. Additionally, we have subsam-
pled the point cloud at different resolutions to obtain an approxima-
tion of the Gargoyle with varying levels of accuracy. In Figure 5,
we illustrate the result and show a comparison with polygons.

Efficient Shape Deformation. An advantage of our continuous-
domain model is that the shapes are described by a finite number
of control points, whereas the corresponding coordinate functions
x, y, and z live in a continuum. This allows us to describe a shape
deformation process in the continuous domain by just displacing the
control points. An example of a deformation is shown in Figure 1.

Fast Computation of Surface Integrals. In certain applications
that require iterative optimization, it is necessary to compute sur-
face or volume integrals in a fast way. An example is the defor-
mation of a surface which is guided by minimizing an energy func-
tional in real time. We illustrate how a flux E across the surface S,
parameterized by σ(u, v), is computed in an efficient and fast way.
Given a vector field f , one way of expressing the flux E is by

E(σ) =

‹
S

f · dS =

ˆ 1

0

ˆ 1

0

gx(σ)dy ∧ dz, (6)

where dS represents the vector differential of the surface
area, ∧ denotes the wedge product, and gx(x, y, z) =
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Figure 5: Interpolation of shapes with spherical topology: Smooth
Gargoyle reconstructions at different resolutions. The same number
of control points is used in both directions of the parameter domain,
i.e., M = M1 = M2. In the top row, the results obtained with our
construction are shown, whereas in the bottom row a polygon re-
construction method is applied. Note that, with our approach the
smoothness of the model does not depend on the number of param-
eters.

´ x
−∞ divf(τ, y, z)dτ is the pre-integrated divergence of the vec-

tor field f along the x-dimension. Typically, f does not depend
on the surface and hence, gx can be precomputed and stored in a
look-up table, which significantly speeds up the computation. It is
worth mentioning at this point that the use of pre-integrated func-
tions is only possible because we define the surface σ in the con-
tinuous domain. Next, the flux E can be efficiently optimized by
computing the gradient of E w.r.t. the control points using a classi-
cal steepest-descent iterative method. An explicit expression of the
gradient can easily be obtained and hence, implemented in an exact
way. We illustrate the above computation by segmenting the sur-
face of a human brain, which has been extracted from a medical 3D
MRI image. We first compute an edgemap of the 3D image using a
standard surface extraction algorithm as described by [Aguet et al.
2005] and construct an energy functional E that depends on the
gradient of the edgemap. Hence, in (6), the gradient corresponds
to f . By minimizing (6), σ deforms iteratively to approximate the
edge map, as shown in Figure 6. The result can easily be manually
adjusted by a clinician.

Figure 6: Brain segmentation in a 3D medical MRI image. The
red surface is a rendered edgemap that has been extracted from the
medical data. An ellipsoidal surface is initialized inside the brain
surface (left) and evolves by iteratively minimizing (6) (from left to
right). The final result is shown on the right and corresponds to a
smooth and continuous closed surface shape.

5 Conclusion

The standard method for smooth parametric shape modeling in in-
dustry is NURBS. In this paper, we presented a framework to model
smooth shapes with spherical topology. The fundamental differ-

ence with the existing standard is that our basis functions are in-
terpolatory and non-rational and that we only use uniform shifts.
Our parameterization is simpler than NURBS and thus has sev-
eral advantages in practical applications such as immediate recon-
struction of smooth surfaces by interpolating parameterized point
clouds, improved shape modeling by making the process more in-
tuitive, and a simplified formulation of optimization schemes that
involve integral- and derivative-dependent quantities. Our frame-
work indicates promising future directions aiming at extending it to
a richer family of topologies.
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