Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Generalized Sampling
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

A Generalized Sampling Method for Finite-Rate-of-Innovation-Signal Reconstruction

C.S. Seelamantula, M. Unser

IEEE Signal Processing Letters, vol. 15, pp. 813-816, 2008.


The problem of sampling signals that are not admissible within the classical Shannon framework has received much attention in the recent past. Typically, these signals have a parametric representation with a finite number of degrees of freedom per time unit. It was shown that, by choosing suitable sampling kernels, the parameters can be computed by employing high-resolution spectral estimation techniques. In this letter, we propose a simple acquisition and reconstruction method within the framework of multichannel sampling. In the proposed approach, an infinite stream of nonuniformly-spaced Dirac impulses can be sampled and accurately reconstructed provided that there is at most one Dirac impulse per sampling period. The reconstruction algorithm has a low computational complexity, and the parameters are computed on the fly. The processing delay is minimal—just the sampling period. We propose sampling circuits using inexpensive passive devices such as resistors and capacitors. We also show how the approach can be extended to sample piecewise-constant signals with a minimal change in the system configuration. We provide some simulation results to confirm the theoretical findings.

@ARTICLE(http://bigwww.epfl.ch/publications/seelamantula0803.html,
AUTHOR="Seelamantula, C.S. and Unser, M.",
TITLE="A Generalized Sampling Method for
	Finite-Rate-of-Innovation-Signal Reconstruction",
JOURNAL="{IEEE} Signal Processing Letters",
YEAR="2008",
volume="15",
number="",
pages="813--816",
month="",
note="")

© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved