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ABSTRACT

We address the problem of zero-order-free image reconstruc-
tion in digital holographic microscopy. We show how the goal
can be achieved by confining the object-wave modulation to
one quadrant of the frequency domain, and by maintaining a
reference-wave intensity higher than that of the object. The
proposed technique is nonlinear, noniterative, and leads to
exact reconstruction in the absence of noise. We also pro-
vide experimental results on holograms of yew pollen grains
to validate the theoretical results.

Index Terms— interferometry, digital holography, mi-
croscopy, zero-order, cepstrum.

1. INTRODUCTION

Digital holographic microscopy employs interferometry for
imaging the three-dimensional (3-D) structure of biological
specimens. The advantage of this technique is that it allows
for the reconstruction of both amplitude and phase of a wave-
front [1–3]. A typical holography application comprises two
main stages: (i) hologram recording and (ii) reconstruction.
The acquisition is done digitally and the reconstruction is per-
formed numerically within the framework of Fresnel diffrac-
tion theory. We briefly introduce the governing formulas in
the two stages and also specify the signal models.

1.1. Off-axis hologram recording

Holograms are formed as a result of the interference between
two waves—one emanating from the object, denoted by o(x),
and the other a reference wave r(x), where x = (x, y). Their
spatial intensity distribution i(x) is given as

i(x) = |r(x) + o(x)|2

= |r(x)|2 + |o(x)|2 + r∗(x)o(x) + r(x)o∗(x).
(1)

A provisional patent has been filed by the EPFL based on the reconstruc-
tion technique reported in this paper.

The first two terms on the right-hand side of (1) correspond
to the intensities of the reference and object waves, respec-
tively. In state-of-the-art digital holography systems, i(x) is
recorded by a charge-coupled device (CCD) camera placed at
the hologram plane [2, 4]. The adjective off-axis reflects the
fact that the reference and object waves are separated by an
angle θ, as shown in Figure 1. The off-axis arrangement has
certain advantages, which will become clear when we address
the reconstruction problem.

1.2. Hologram illumination

We assume that the reference is a plane wave with a spatially-
constant intensity ir = |r(x)|2. Let io(x) = |o(x)|2 de-
note the intensity of the object wave. To reconstruct the holo-
gram, a plane wave u(x)—often referred to as the illumina-
tion wave—is used to illuminate the hologram. The resulting
field ψo(x) = u(x)i(x) is given by

ψo(x) = ir u(x) + u(x)io(x)︸ ︷︷ ︸
zero-order terms

+ u(x)r∗(x)o(x)︸ ︷︷ ︸
virtual image

+ u(x)r(x)o∗(x)︸ ︷︷ ︸
real image

. (2)

The spatial locations of the various terms indicated above
are shown in Figure 2. The zero-order terms comprise the
plane wave ir u(x) and the object wave u(x)io(x), whose
spatial variation is a function of the object. Since the ref-
erence and object-wave intensities modify the amplitude but
not the phase of u(x), the zero-order terms propagate parallel
to u(x). The spatial spread of the zero-order depends on the
spectrum of the object wave. The virtual image is a reflection
of the real image with respect to the hologram plane. The sep-
aration between the three images is precisely the advantage
of the off-axis configuration. Note that for θ = 0◦, it is not
possible to spatially separate the various images. For the spe-
cial case where u(x) = r(x), the real and virtual images are
merely scaled by the intensity of the reference wave. When
the distance of propagation equals the optical path distance d
between the object and the hologram plane in the recording
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Fig. 1: Off-axis digital holography—Recording.

process, the real image comes into focus.
In the existing methods for off-axis hologram reconstruc-

tion, the object wave is approximately recovered by using a
bandpass filter [5,6], an approach popularly known as spatial
filtering. The estimated object wave is demodulated by re-
moving the carrier frequency offset, or by using the complex
conjugate component derived from a reference hologram [7],
and then Fresnel-propagated numerically to adjust the focus
of the reconstructed image.

1.3. Digital hologram reconstruction

By employing the Fresnel approximation [1, 8], the underly-
ing diffraction pattern can be specified up to second-order ac-
curacy. In this framework, we have the following expression
for the reconstructed wavefront:

ψi(ξ) =
exp(j 2π d/λ)

jλ d
exp

(
j π
λd

(ξ2 + η2)
)

×F
{

ψo(x) exp
(

jπ
λd

(x2 + y2)
)}

,

where ξ = (ξ, η), λ is the wavelength and F denotes the
Fourier transform operator. The reconstruction plane corre-
sponds to x = ξ and y = η. The reconstructed wavefront
is complex-valued and therefore can be decomposed into two
parts—modulus and phase, which give rise to the amplitude-
and phase-contrast images, respectively. The distance d is the
adjustable parameter to bring the image into focus.

In practice, due to the finite size of the hologram and due
to sampling, the object wave, the twin image and the zero-
order have to be accommodated within a pre-specified region
and without overlap among them. The twin image is redun-
dant since it does not carry any more information than that
already contained in the object wave; it is a natural conse-
quence of the intensity measurement process and hence un-
avoidable. The zero-order component has a spread twice that
of the object wave and occupies a major portion of the given
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Fig. 2: Off-axis digital holography—Reconstruction.

area. Thus, the conventional reconstruction scheme is inef-
ficient as far as utilizing the spatial resources is concerned.
The standard approaches are based on estimating the object
wave by spatial filtering [6]. This approach gives good results
if θ is large enough to minimize the overlap between the ob-
ject wave and the zero-order terms. Otherwise, the zero-order
cannot be fully suppressed.

In this paper, we propose a new technique to accurately
estimate the complex object wave, despite overlap between
the object wave and the zero-order terms. The technique is
based on realistic assumptions about the recording conditions.
The main advantage is that the technique fully suppresses the
zero-order terms and therefore allows for efficient utilization
of the available bandwidth.

The organization of this paper is as follows. In Sec. 2, we
analyze the spectral properties of the hologram. In Sec. 3, we
develop the new reconstruction technique. The experimental
results are provided in Sec. 4.

2. SPECTRUM OF THE HOLOGRAM

Consider the case where the reference is a plane wave; i.e.,
r(x) = A exp(−j 〈k, x〉), where A is the complex amplitude,
and the wave-vector is k = (kx, ky), kx and ky being the
wave-numbers in the x and y directions, respectively. The
symbol 〈·, ·〉 denotes the inner product of two index vectors
and is defined in the usual sense; specifically, 〈k,x〉 = kxx+
kyy. Corresponding to this choice, (1) reduces to

i(x) = |A exp(−j 〈k, x〉) + o(x)|2

= |A|2
∣∣∣1 +

1
A

exp(j 〈k, x〉)o(x)
︸ ︷︷ ︸

õ(x)= o(x)
r(x)

∣∣∣
2
.

Note that multiplication by exp(j 〈k, x〉) corresponds to a
translation of the Fourier spectrum of o(x) to the location
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−k. Consider the 2-D Fourier transform of i(x):

F{i}(ω) = |A|2
{

δ(ω) + F{o}(ω + k)

+F{o}(−ω − k) + q(ω)
}

,

where q(ω) denotes the 2-D autocorrelation of F{o}(ω),
which gives rise to the object-wave zero-order term. In
the special case where F{o}(ω) has a compact support
[−σx, σx] × [−σy, σy], the autocorrelation also has com-
pact support [−2σx, 2σx] × [−2σy, 2σy]. The problem is to
exactly compute o from i but without the autocorrelation q.

3. PROPOSED RECONSTRUCTION TECHNIQUE

The proposed method is based on the cepstrum [9], which
is employed to suppress the autocorrelation. The main con-
ditions required are that the object-wave modulation be con-
fined to one quadrant of the frequency domain, and that the
intensity of the reference wave be higher than that of the ob-
ject. The key result is presented in the form of the following
theorem.

Theorem 1. If õ ∈ (L1 ∩ L2)(R × R) has a Fourier trans-
form F{õ} that is identically zero outside Q1 = [0, +∞) ×
[0, +∞) and |õ| ≤ ε < 1, then |1 + õ(x)|2 specifies õ(x)
almost everywhere.

Proof. We first need the following lemmas.

Lemma 1. If õ ∈ (L1 ∩L2)(R×R) has a Fourier transform
F{õ} that vanishes outside Q1 = [0, +∞) × [0, +∞) and
|õ| ≤ ε < 1, then F{log(1 + õ)}(ω) is also identically zero
outside [0, +∞) × [0, +∞) almost everywhere.

Proof. Since |õ| ≤ ε < 1, we invoke the Taylor series expan-
sion for log(1 + õ(x)):

log(1 + õ(x)) =
∞∑

n=1

(−1)n−1

n
õn(x). (3)

Applying the Fourier transform operator F to (3), we get that

F{log(1 + õ)}(ω) =
∞∑

n=1

(−1)n−1

n
F{õn}(ω). (4)

Recall the convolution property of the Fourier transform:

F{õn}(ω) = (F{õ} ∗ F{õ} ∗ F{õ} ∗ · · · ∗ F{õ})︸ ︷︷ ︸
n times

(ω). (5)

Since F{õ} vanishes outside Q1, the right-hand side of (5)
also vanishes outside Q1 almost everywhere. This property
carries over to the right-hand side of (4).

Lemma 2. If õ ∈ (L1 ∩ L2)(R × R) and F{õ} vanishes
outside Q1 = [0, +∞) × [0, +∞) and |õ| ≤ ε < 1, then
F{log(1+ õ∗)}(ω) also vanishes outside (−∞, 0]×(−∞, 0]
almost everywhere.

Proof. The proof is similar to that of lemma 1.

We continue with the proof of Theorem 1. Consider the
factorization: log |1+õ|2 = log(1+õ)+log(1+õ∗). Applying
the Fourier transform to both sides gives rise to the cepstrum:

c(ω) = F{log(1 + õ)}(ω) + F{log(1 + õ∗)}(ω).

From lemmas 1 and 2, it follows that the functions F{log(1+
õ)}(ω) and F{log(1 + õ∗)}(ω) have non-overlapping sup-
ports. By retaining the region corresponding to the support of
F{õ}, we have that

F{log(1 + õ)}(ω) = F{log |1 + õ|2}(ω) · 1Q1 , (6)

where 1Q1 is the indicator function of the quadrant Q1. The
inverse Fourier transform of (6) gives

log(1 + õ(x)) = F−1{F{log |1 + õ|2} · 1Q1}(x),
⇒ õ(x) = exp

(
F−1{F{log |1 + õ|2} · 1Q1}

)
(x) − 1. (7)

Equation (7) summarizes the proposed technique for com-
plex object-wave reconstruction. The conditions on the spec-
tral support and intensity can be satisfied by suitably adjusting
the design parameters A, kx, and ky [2].

4. EXPERIMENTAL RESULTS

We next corroborate the theoretical findings with experimen-
tal results. The measurements are acquired in the transmis-
sion mode by using a digital holographic microscope with the
objective having a magnification factor of 10 and a numerical
aperture of 0.25. The specimen is a small collection of yew
pollen grains in water. The specimen is illuminated with a
coherent source of wavelength λ = 680 nm. The Fresnel
distance at which the hologram is measured is d = 3.5 cm.
An 8-bit CCD camera is used with spatial sampling steps of
6.45 µm in both the horizontal and vertical directions. The
intensity ratio between the object and reference beams is con-
trolled with a neutral density filter, which absorbs part of the
power in the object beam, thus ensuring a stronger intensity
of the reference. The (spatial) average reference-wave inten-
sity is approximately 7 times higher than that of the object
wave. The value is found to be a good compromise between
the quality of reconstruction and the quantization of the inter-
ference fringes. The ratio can be increased provided that the
measurements are finely quantized, thus potentially leading
to an improvement in the overall quality of the reconstruction.
The modulation is chosen to confine the imaging order in one
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quadrant by changing the direction of propagation.
For the conventional reconstruction, the Fresnel trans-

form technique is used together with digital parametric phase
masks for object-wave demodulation and the Fresnel inte-
gration technique for propagation. For more details of the
hologram reconstruction, see [2, 8]. The hologram was also
reconstructed using the cepstrum technique proposed in this
paper. For a fair comparison, the reconstruction parameters
for both spatial filtering and the cepstral techniques are kept
the same, and one quadrant of the Fourier plane is filtered au-
tomatically in both cases. The results are shown in Figure 3.
The zero-order term manifests as ghost artifacts in the ampli-
tude image and as a high-frequency modulation in both the
amplitude and phase images. Note that the artifacts are sup-
pressed by the cepstral technique. From Figure 3(c) and (d),
we see that the cepstral technique gives rise to better phase
images than the linear technique and that the spatial extent
is improved considerably. Although in principle the cepstral
technique completely suppresses the zero-order, in practice,
a small residue may be present because of the mismatch
between the model and the practical scenario (for example,
the assumption of a plane wave may not always hold) and
inevitable measurement noise.

5. CONCLUSIONS

We presented a new technique for zero-order-free image re-
construction in the context of digital holographic microscopy.
Our technique is based on the cepstrum of the measurements
and gives rise to exact results provided that some realistic
conditions about the object-wave modulation and the relative
intensities of the object wave and the reference are ensured.
These conditions, however, can be easily realized in practice.
We provided experimental results to support the theoretical
calculations. The technique proposed in this paper may be
extended to handle non-planar reference waves as well in or-
der to increase the scope of its practical applicability.
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