EPFL
 Biomedical Imaging GroupSTI
EPFL
  Publications
English only   BIG > Publications > Kendall Shapes


 CONTENTS
 Home Page
 News & Events
 People
 Publications
 Tutorials and Reviews
 Research
 Demos
 Download Algorithms

 DOWNLOAD
 PDF
 Postscript
 All BibTeX References

Dictionary Learning for Two-Dimensional Kendall Shapes

A. Song, V. Uhlmann, J. Fageot, M. Unser

SIAM Journal on Imaging Sciences, vol. 13, no. 1, pp. 141-175, 2020.



We propose a novel sparse dictionary learning method for planar shapes in the sense of Kendall, namely configurations of landmarks in the plane considered up to similitudes. Our shape dictionary method provides a good trade-off between algorithmic simplicity and faithfulness with respect to the nonlinear geometric structure of Kendall's shape space. Remarkably, it boils down to a classical dictionary learning formulation modified using complex weights. Existing dictionary learning methods extended to nonlinear spaces map the manifold either to a reproducing kernel Hilbert space or to a tangent space. The first approach is unnecessarily heavy in the case of Kendall's shape space and causes the geometrical understanding of shapes to be lost, while the second one induces distortions and theoretical complexity. Our approach does not suffer from these drawbacks. Instead of embedding the shape space into a linear space, we rely on the hyperplane of centered configurations, including preshapes from which shapes are defined as rotation orbits. In this linear space, the dictionary atoms are scaled and rotated using complex weights before summation. Furthermore, our formulation is more general than Kendall's original one: it applies to discretely defined configurations of landmarks as well as continuously defined interpolating curves. We implemented our algorithm by adapting the method of optimal directions combined to a Cholesky-optimized order recursive matching pursuit. An interesting feature of our shape dictionary is that it produces visually realistic atoms, while guaranteeing reconstruction accuracy. Its efficiency can mostly be attributed to a clear formulation of the framework with complex numbers. We illustrate the strong potential of our approach for the characterization of datasets of shapes up to similitudes and the analysis of patterns in deforming two-dimensional shapes.


@ARTICLE(http://bigwww.epfl.ch/publications/song2001.html,
AUTHOR="Song, A. and Uhlmann, V. and Fageot, J. and Unser, M.",
TITLE="Dictionary Learning for Two-Dimensional {K}endall Shapes",
JOURNAL="{SIAM} Journal on Imaging Sciences",
YEAR="2020",
volume="13",
number="1",
pages="141--175",
month="",
note="")

© 2020 SIAM. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SIAM.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.