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We perform elastic registration by an algorithm based on a pixelwise and regular-

ized optimization criterion. We express the deformation field thanks to B-splines,

which allows us to deal with a rich variety of deformations. The algorithm is able

to handle soft landmark constraints, which is particularly useful when parts of the

images contain very little information or when it is unevenly distributed. We

solve the problem by minimizing a distance between the target image and the

warped source. We regularize this minimization problem by divergence and curl.

We apply the proposed algorithm to the registration of the confocal scanning mi-

croscopy images of Drosophila embryos.

Introduction

Putting two images into registration can be

restated as finding a function (also called a de-

formation field) that performs a backward

mapping of a target image onto a source image

[1, 2]. This is a typical problem for various

molecular-biology disciplines. The proposed

method is a generalization of some recent

works on the registration of biological images

[3, 4, 5]. Representing the deformation field by

B-splines enables us to produce nonlinear elas-

tic deformation models [6] and provides high-

quality interpolation [7]. The deformation field

is estimated through a minimization problem

that includes the energy of the error between

both images, a smoothness regularization term,

and the error resulting from the inexact match

of landmarks that are used to handle any po-

tential information mismatch.

In the present study, we illustrate the registra-

tion problem in the context of analysing the

gene-expression images obtained by means of

immunofluorescence histochemistry and by

confocal scanning microscopy [8]. These tech-

nologies enable us to visualize and quantify

molecules in cells with high spatial and tempo-

ral resolution.

We apply our registration algorithm to confocal

images of fruit fly Drosophila embryos published

in [9]. The registration is necessary to build a pre-

cise map of the gene expression. Each gene in this

map is represented by its integrated expression

pattern, which we obtain by averaging individual

patterns after they have been registered. High-

quality registration is of primary importance, as

averaging of unregistered or of inaccurately regis-

tered images leads to a blurred average image that

doesn’t possess the essential characteristic fea-

tures of the whole class of individual patterns.

Registration Method

Our registration methodology is based on the

minimization of an energy functional that incorpo-

rates a similarity measure Eimg between the target

image and the warped source image, soft land-

mark constraints through the term Eµ , and a priori

knowledge about the deformation field through

two independent measures Ediv and Erot that are
related to the gradients of both divergence and

curl of the deformation field. Thus, the energy to

minimize is the linear combination of these en-

ergy terms given by

E = wi Eimg +wµ Eµ +wd Ediv +wr Erot . (1)



The goal of image registration is to find a

function g(x) :R2 �R2 which maps coordi-

nates from a target image I t onto a source im-
age Is so that Is (g(x)) (a warped version of
the source image) resembles as much as possi-

ble I t (x). A standard way of evaluating this
resemblance is by measuring the energy of the

difference image

Eimg = I t (x)� Is (g(x))( )d2 x
x �R2� . (2)

Image representation. Note that, in (2), the

target image is always evaluated at integer po-

sitions. However, this is not the case for the

source image Is which needs to be evaluated
at non-integer positions g(x). For this purpose,
we use cubic B-spline interpolation as follows:

We express the source image as

Is (x) = ck �
3 x2
h2
� k2
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where � 3 is the B-spline of degree 3, where
the coefficients ck are given by [10], and
where h1 and h2 are parameters that control the
degree of detail of the representation.

Deformation representation. Likewise [3, 4,
5], we also express the deformation field as the

linear combination of B-splines given by

g(x) = g1(x1, x2 ),g2 (x1, x2 )( ),
where, for i � 1,2{ }, we have that

gi(x) = ci,k �
3 x2
hi,2

� k2
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� . (4)

Cubic B-splines constitute a Riesz basis of L2
and have a fourth order of approximation.

Therefore, any deformation field can be repre-

sented using a fine-enough scale. Moreover,

the use of cubic B-splines guarantees the con-

tinuity of the derivatives of the deformation up

to the second order.

Use of landmarks. Landmarks are used to im-
pose soft constraints to the deformation field.

We have chosen to deal with soft constraints

because the landmark positions may be con-

taminated by noise; therefore, there is no point

in trying to satisfy them exactly. A second rea-

son for using soft landmark constraints is that

landmarks may happen to be distributed in such a

way that there exists no geometric deformation in

the search space that can completely satisfy all of

them.

Let us assume that K pairs of corresponding

landmarks µs
(k ) ,µ t

(k )( ), k � 1,2,K,K{ }, are avail-

able. Then, we handle the soft landmark con-

straints by an energy term of the form

Eµ =
1

K
µ t
(k ) � g(µs

(k ) )
2

k=1

K

� .

A priori knowledge about deformation smooth-
ness. The smoothness of the deformation field is a

useful regularization term for the minimization

problem, especially when little information is

available. The authors of [11] propose two regu-

larizing terms that fully exploit the vector nature

of the data

wd Ediv +wr Erot = wd �divg
2
d2 x

R2�

+wr � rotg
2
d2 x

R2� ,
(5)

where divg =� x1g1 +� x2g2 represents the diver-

gence of the 2D vector field g , where

rotg = ��x2g1 +�x1g2 gives the length of the unique
component of the curl of g , and where

�f = � x1 f ,�x2 f( ) is the gradient of a scalar func-
tion f . The divergence of a vector field is related
to the existence of sinks and sources in the vector

field, while the curl is related to the rotation

within the field. Therefore, the proposed regulari-

zation penalizes changes in the local structure of

the divergence and curl.

Thanks to the fact that B-splines are piecewise

polynomials, the integrals in (5) can be precom-

puted exactly using closed formulæ; therefore, the

evaluation of the regularization term (5) is very

fast and efficient.

Optimizer. To minimize (1) with respect to the
parameters of the transform g in (4), we use an
optimization algorithm that is inspired by the

Levenberg-Marquardt nonlinear regression [12]

and that is enhanced by the BFGS (Broyden-

Fletcher-Goldfarb-Shanno) estimation of the Hes-

sian [13]. This algorithm achieves smooth transi-



tions between quasi-Newton and gradient-

descent steps, depending on the goodness of fit

of a local model of the function being mini-

mized.

Implementation and Results

We have applied our registration method to

confocal images of gene expression patterns in

Drosophila embryos. First, we have carefully
cropped the unregistered raw images so that

embryos fit tightly into the image frame. As a

result, the images differ in size since they re-

flect the actual size of an embryo. To ease reg-

istration, we proceed by bringing them to the

same size.

The registration is implemented iteratively:

Step 0: Center the unregistered images and pad

them with zeros to reach the size of the widest

image, and of the highest image too.

Step 1: Compute a new average image.

Step 2: Align all images against the average

embryo from Step 1.

Step 3: Alternate between Step 1 and Step 2.

This process can be iterated until the accuracy

of registration is satisfactory. We monitor this

accuracy by visual inspection of the registered

images (Fig.1). We stopped after two itera-

tions. The weight parameters for the registra-

tion algorithm were wi =1, wµ = 0 , wd = wr =1

(i.e., no landmarks were used). Sometimes,
however, acceptable registration accuracy

could not be achieved in automated mode

(e.g., in the presence of a large displacement

relative to the average embryo); in those cases,

the use of landmarks proved extremely help-

ful.

After several alignment iterations, even the

widest or highest embryos (those that deter-

mined the size of the first average at Step 0)

shrink a little and are not filling the whole im-

age space anymore. As a result, the registered

images have an empty rim around them, which

propagates to the average image (Fig.2(a)).

These margins should be removed to enforce a

tight fit of the average embryo into the image

frame. We compute the cropping coordinates

as follows: For each individually transformed

image, we track the coordinates of the original

left, right, upper, and lower bounds of an embryo

(as shown in Fig.1). Then, we compute its average

size by pooling together the transformed x -
coordinates of the left and right edges, and the

transformed y -coordinates of the upper and lower
edges. After cropping, the average image is

brought to the same scale as the raw individual

ones (Fig.2(b)). Finally, we use the same coordi-

nates to crop all individually transformed embryos

and present all the registered embryos at the same

scale.

Fig.1. Images of two embryos before registration (1a and

1b), and after registration (2a and 2b). The transformed

frames of the source images are drawn in the right panels.

The extreme points of embryos are marked by small circles.

Fig.2. Average images obtained before registration (a) and

after registration (b). The image (b) is cropped to the aver-

age scale.

Registration accuracy. The expression of the

genes under consideration (segmentation genes) is

largely a function of the position along the hori-

zontal axis of the embryo body. Hence, one-

dimensional data extracted from narrow strips cut

out from an image along the x -axis can be used to
give a fair representation of the registration accu-

racy. In Fig.3, we provide graphs of the data ex-

tracted from the central 10% strip before and after
registration. In doing so, we have excluded the

empty image areas. As a result of this segmenta-

tion, a raw image is transformed into a series of

data records that describe groups of non-empty

pixels, separated from other groups by empty pix-

els. The coordinates of non-empty group centroids



are transformed according to (4), and the regis-

tered one-dimensional patterns are presented

in Fig.3(b). Thanks to the high quality of regis-

tration, the resulting integrated pattern suc-

cessfully preserves the characteristic features

of the individual patterns.

Fig.3. Five expression patterns presented as one-

dimensional graphs before registration (a) and after reg-

istration (b).

Conclusion

We have presented an elastic registration algo-

rithm based on B-splines that improves on

state-of-the-art nonlinear registration algo-

rithms. Our algorithm incorporates a pixelwise

and regularized optimization criterion which

proves to offer a very efficient framework. In

particular, it allowed us to insert a priori

knowledge about the deformation class

through regularization weights. We have pro-

posed a novel methodology to incorporate the

landmark information in the optimization

process from its very initialization. We have

improved the performance of the optimizer by

the introducing a BFGS estimator of the Hes-

sian. Finally, we have performed the optimiza-

tion in a multiresolution fashion to increase the

robustness and efficiency of the algorithm.

We have successfully registered confocal im-

ages of gene expression patterns in Drosophila
embryos. The registration shows a high accu-

racy, as evidenced by the coincidence of the

shape and location of gene expression domains

in the individual patterns. As a result, the aver-

age image gives a fair representation of the

essential features of a whole class of individ-

ual embryos, which is very important for the

further analysis and modeling of data.
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