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We present a new formulation of a family of proximity operators that generalize the projector step for phase
retrieval. These proximity operators for noisy intensity measurements can replace the classical “noise-free” pro-
jection in any projection-based algorithm. They are derived from a maximum-likelihood formulation and admit
closed form solutions for both the Gaussian and the Poisson cases. In addition, we extend these proximity
operators to under-sampled intensity measurements. To assess their performance, these operators are exploited
in a classical Gerchberg–Saxton algorithm. We present numerical experiments showing that the reconstructed
complex amplitudes with these proximity operators always perform better than using the classical intensity
projector, while their computational overhead is moderate. © 2016 Optical Society of America

OCIS codes: (100.5070) Phase retrieval; (100.3020) Image reconstruction-restoration; (100.3190) Inverse problems; (100.6640)

Superresolution.
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1. INTRODUCTION

The classical phase retrieval problem is to reconstruct a
complex-valued signal x from the measurements of its squared
modulus [1]. This problem arises in many applications (e.g.,
crystallography [2], microscopy [3], and astronomy [4]).
Since the seminal paper of Gerchberg and Saxton [5], an
abundance of literature has been devoted to it (see Ref. [6]
for a review). A large part of the proposed algorithms rely
on successive projections [7–11]. For the last few years, there
is a renewed interest for phase retrieval, and several new
alternatives to successive projections methods have been pro-
posed: the semi-definite programming-based formulations
[12,13], the algorithms for phase retrieval of sparse signals
[14–16], the gradient-based methods using Wirtinger deriva-
tives [17,18], and a variational Bayesian framework [19].

Here, we adopt a vector representation of the complex
image x � �x1;…; xK �, where K is the number of pixels. In
the phase retrieval problem, the forward model that links
the complex amplitude x ∈ CK to the measured image inten-
sities d ∈ RK� is

dk � jxkj2 � nk; (1)

where n is some measurement noise, and jxkj2 denotes the
squared modulus of xk.

Such an inverse problem is classically solved in a variational
framework by estimating an x that minimizes a cost function

C�x� � L�x� �R�x�; (2)

which is a sum of the data term L and a regularization func-
tional R. In this approach, known as a penalized maximum
likelihood, the data term is defined according to the forward
model and the statistics of the noise, whereas the regularization
function is designed to enforce some prior knowledge about x
(such as support, non-negativity, smoothness,…). As L and R
are defined independently, any improvement on one of
these functions implies a better estimate of the solution of
the inverse problem.

Most projection-based algorithms [5,7–11] use constraints
that assume noise-free measurements. Some authors have stud-
ied the behavior of these methods in a noisy environment [20],
while others have proposed empirical modifications to mitigate
the effect of the noise [21–23]. In this paper, we derive a like-
lihood function adapted to the statistics of the noise via a
simple modification of the intensity-projection operator. We
had previously established the formulation of this proximity
operator in the Gaussian case with a specific alternating direc-
tion method of multipliers (ADMM) algorithm for image
reconstruction in optical long-baseline interferometry [24];
a similar result was also published recently [25], but neither
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further characterization nor comparison with standard projec-
tion methods was done.

Rather than a full-fledged phase-retrieval algorithm, the
scope of this paper is a novel formulation of a noise-adapted
projection step that can be used in any other projection-based
algorithm [8]. Therefore, we focus on the likelihood function.
To demonstrate its effect, we apply the proposed projectors in
the standard Gerchberg–Saxton algorithm (GS). We have
chosen this simple phase-retrieval algorithm as a baseline be-
cause it does not use any priors. Therefore, the quality of its
results depends only on the projection used. Whereas GS is
hardly state-of-the-art anymore, the reader must keep in mind
that our proposed proximity operators can be plugged into
many optimization schemes (see Refs. [10,26]) that rely on
proximity operators to minimize a regularized cost function.

2. GERCHBERG–SAXTON ALGORITHM

The error-reduction method (GS), described in Algorithm (1),
estimates the complex amplitude (the wavefront) of a light
wave in the plane zA from the intensity profiles dA and dB
measured at depths zA and zB , respectively. It solves the feasibil-
ity problem

find x ∈ CA∩fx:Hx ∈ CBg; (3)

where H is the propagation operator from plane zA to plane zB ,
and Ci with i � A; B is the set of complex-valued signals of
squared modulus d i, i.e., Ci � fx ∈ CK ; jxj2 � d ig. The
propagation operator is classically either the Fresnel operator
(under a Fresnel approximation) or the Fourier operator (under
a Fraunhoffer approximation). This can be reformulated as the
minimization problem

x� ∈ arg min
x∈CK

�ιCA
�x� � ιCB

�Hx��; (4)

where ιC is the indicator function of the set C defined as

ιC �x� �
�
0; if x ∈ C
�∞; otherwise: (5)

Observe that, when d i ≠ 0, Ci is generally not a convex set.
Therefore, only local convergence can be established [27].

Algorithm 1: Gerchberg–Saxton algorithm

1: procedure GS(dA, dB)
2: x�0� �

ffiffiffiffiffiffi
dA

p
▹ Initialization

3: for n � 1; 2;…;maxiter do
4: y�n−1∕2� � H · x�n−1� ▹ Propagation to the zB plane
5: y�n� � PB�y�n−1∕2�� ▹ Projection
6: x�n−1∕2� � H−1 · y�n� ▹ Back propagation to the zA plane
7: x�n� � PA�x�n−1∕2�� ▹ Projection
8: return x�maxiter� ▹ The complex amplitude in the zA plane

The GS algorithm and its successors [8,10,11] involve an
element-wise projection operator P�xjd � � �P�x1jd 1�;…;
P�xK jdK �� that constrains the modulus of the current iterate
x to be equal to the square root of its measurement

ffiffiffiffi
d

p
while

keeping its phase untouched, as in

P�xkjdk� �
� xk

jxk j
ffiffiffiffiffi
dk

p
; if jxkj > 0ffiffiffiffiffi

dk

p
; otherwise:

(6)

The projection P�xjd � of x onto the set C of all signals
of intensity (or squared modulus) d will be called “classical
projection” throughout this paper. It is a solution of

minimize
y∈CN

�
ιC �y� �

1

2
‖x − y‖2

�
: (7)

To prevent stagnation of the GS algorithm, a relaxed pro-
jection step P 0 was proposed [28,29]:

P 0�xkjdk� � �1 − β�xk � βP�xkjdk�; (8)

where 0 ≤ β ≤ 1 is a relaxation parameter empirically set close
to 0 for regions where the noise dominates.

As observed by Levi and Stark [30,31], the GS algorithm is a
non-convex instance of the projection-onto-convex-set (POCS)
algorithm. POCS is widely employed in signal processing to
solve feasibility problems. However, as soon as noisy intensities
are considered, Eq. (6) does not give the solution anymore that
is optimal in the maximum-likelihood sense. Therefore, GS
leads to errors in the reconstructed wavefront in the presence
of noisy measurements.

We assume that the measurement noise nk � dk − jxkj2
at pixel k is independent and centered with a probability
density Pr�nkjxk�. For a given intensity measurement dk, the
co-log-likelihood of the noise distribution at pixel k (up to
the constant cst) is

lk�nk� � − ln Pr�nkjxk� � cst: (9)

The problem addressed by GS has a maximum-likelihood
formulation expressed by

x� ∈ argmin
x∈CK

�XK
k�1

lk�jxkj2 − dk��
XK
k 0�1

lk 0

�
j�Hx�k 0 j2 − dk 0

��
:

(10)

This is not a feasibility problem anymore. However, it is still
closely related to the GS formulation described by Eq. (3). We
argue that, with the help of proximal operators, both problems
can be solved using identical convex-optimization techniques
[e.g., Douglas–Rachford (DR)] without relying on smooth
approximations of l [32].

3. PROXIMITY OPERATOR FOR INTENSITY

A. Non-Convex Proximity Operators
It is possible to tackle a class of problems broader than feasibil-
ity problems by introducing proximity operators [26]. A prox-
imity operator (or Moreau proximal mapping [33]) is a
generalization of the classical projection on a set where the
indicator function ιC in Eq. (7) is replaced by an arbitrary
lower semi-continuous convex function g :CK → R so that

proxg�x̃��def arg min
x∈CK

�
g�x� � 1

2
‖x − x̃‖22

�
: (11)

The concept of proximal mapping has also been extended to
non-convex functions that fulfill three conditions: (i) lower
semi-continuity, (ii) prox-boundedness, and (iii) prox-regularity
(see Theorem 4 of Ref. [34]).
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B. Proximal Operator for Maximum Likelihood
As long as the measurement noise is uncorrelated, the likeli-
hood function defined in Eq. (9) is separable along the pixels.
In this element-wise operation, we shall drop the subscript k to
simplify the notations, and state αf �x� � lk�dk − jxkj2� with
α > 0 as a tuning factor. The function f has the following
properties: (i) continuity, provided that lk is also continuous
(that is true for most noise statistics used in practice);
(ii) non-convexity (e.g., if x1 �

ffiffiffi
d

p
is a minimum of f , then

x2 � −
ffiffiffi
d

p
is, but not necessarily �x1 � x2�∕2); (iii) prox-

boundedness as f is positive (and proper). However, as
described further, f is not prox-regular in x � 0.

The proximity operator of αf is given by

proxαf �x̃� � arg min
x∈C

�
αf �x� � 1

2
jx − x̃j2

�
: (12)

As f is a function that depends only on the squared modu-
lus of x, the solution necessarily lies on the line passing through
x̃ and 0 where the gradients of both parts of Eq. (12) have
opposite directions. The phase of the solution is therefore
the phase of x̃. The solution x� � ρ� exp�|ϕ�� of Eq. (12)
is given by

ρ� � arg min
ρ≥0

�
αf �ρ� � 1

2
�ρ − ρ̃�2

�
; (13)

ϕ� � ϕ̃; (14)

where x̃ � ρ̃ exp�|ϕ̃�.
Furthermore, if f �x� has its minimum in jxj2 � d , and

f �jxj� increases monotonically for jxj >
ffiffiffi
d

p
, then there is a

solution that lies on the line between x̃ and its projection
on the circle jxj2 � d , as illustrated in Fig. 1. The position
on this line varies monotonically with α, so that proxαf �x̃�
is x̃ for α � 0 and gets closer to x̃

jx̃j
ffiffiffiffiffi
dk

p
as α increases.

The classical operator defined in Eq. (6) can, thus, be seen
as limα→∞proxαf �x̃� � p�xkjdk�. From this solution, we can
identify three sub-domains where proxαf �x̃� has different
properties.

• When x̃ ∈ fx ∈ C; jxj2 ≥ dg, proxαf � x̃ � is single valued,
and thus f is prox-regular. Furthermore, the proximity
operator of f is non-expansive on this sub-domain.

• When x̃ ∈ fx ∈ C; 0 < jxj2 < dg, f is still prox-regular,
but proxαf is no longer non-expansive. Indeed,
‖proxαf � x̃ � − proxαf � ỹ �‖22 ≥ ‖x̃ − ỹ‖22, as illustrated in Fig. 2.

• When x̃ � 0 and d > 0, proxαf is multivalued in 0 as
all the points on the circle of radius ρ� are the solution of
Eq. (12). As a consequence, f is not prox-regular at f0g
and its proximity operator is not defined for this point.

For practical reasons, we define proxαf everywhere by
assuming that ∠�0� � 0. Thus, the proximity operator of f is

proxαf �x̃� �
�
ρ� if x̃ � 0;
ρ� exp�|ϕ̃� otherwise:

(15)

Let us notice that the modified projection P 0�x̃; d� defined
by Eq. (8) lies also on the line between x̃ and its projection on
the circle jxj2 � d . Its position on this line depends on the
value of the relaxation parameter β. We can thus reinterpret
this modified projection as a heuristic approximation of the
proximity operator.

C. Gaussian Likelihood
For additive Gaussian noise at a given pixel with the variance
σ � Varfdg, the function f is written as

f �x� � w�jxj2 − d �2; (16)

where w � 1∕σ2 is the inverse variance of the noise at the
considered pixel. In this case, Eq. (13) becomes

ρ� � arg min
ρ≥0

�
αw�ρ2 − d �2 � 1

2
�ρ − ρ̃�2

�
: (17)

The solution is then one of the roots of the polynomial qG
defined as

qG�ρ� �
d
dρ

�
αw�ρ2 − d�2 � 1

2
�ρ − ρ̃�2

�
� 4αwρ3 � ρ�1 − 4αwd � − ρ̃: (18)

As there is no second coefficient in this cubic polynomial,
the sum of its roots is zero, whereas their product is strictly
positive since ρ̃∕�4αw� > 0. Thus, qG always has only one pos-
itive root ρ�. As stated in the previous section, this root must
lie between

ffiffiffi
d

p
and ρ̃. It is computed using Cardano’s method.

D. Poisson Likelihood
In the photon counting case, the noise follows a Poisson
distribution and the function f writes

f �x� � jxj2 − d log�jxj2 � b�; (19)

where b is the expectation of some spurious independent
Poisson process that accounts for background emission and
detector dark current at the considered pixel. Given this noise

Fig. 1. Trajectory of x��α� � proxαf �ex� as a function of α. x��α�
follows the line where the level set of f (thin dashed circles) and
jx − exj2 (thin circles) are tangent.

Fig. 2. Illustration of the expansiveness of proxαf �x� when
jxj2 < d .
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distribution, the solution of Eq. (13) is given by the largest real
root of the cubic polynomial qP�ρ� � df �ρ�∕dρ, with

qP�ρ� �
d
dρ

�
αf �ρ� � 1

2
�ρ − ρ̃�2

�
� �2α� 1�ρ3 − ρ̃ρ2 � ��2α� 1�b − 2αd�ρ − bρ̃: (20)

As in the case of Eq. (18), this root is computed using
Cardano’s method. When no background emission is present
(b � 0), this polynomial reduces to a quadratic equation whose
largest root always exists and is given by

ρ� � ρ̃�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8dα�1� 2α� � ρ̃2

p
2� 4α

: (21)

4. PROXIMITY OPERATOR FOR A SUM OF
INTENSITY MEASUREMENTS

In this section, we extend the presented proximity operators to
the case where N complex amplitudes sum up incoherently
on pixels. This corresponds to the multispectral case or when
interference fringes exhibit high frequencies that are not
sufficiently sampled by the detector. In this case, an appropriate
forward model is

dk � ‖yk‖22 � nk; (22)

where yk ∈ CN is a vector containing the N complex ampli-
tudes arriving on the pixels k. In the under-sampled fringes
case, this vector writes yk � �xN �k−1��1;…; xNk�, where the
factor N is chosen such that the adequately sampled complex
amplitude x ∈ CNK fulfills the Nyquist criterion. With this
forward model, the likelihood function writes lk�‖yk‖2; dk�.
By setting yk � ηu, with η ≥ 0 and ‖u‖2 � 1, we can define
αf �η� � lk�η2; dk�. Then Eq. (12) becomes

proxαf �ỹ� � arg min
η≥0;‖u‖2�1

�
αf �η� � 1

2
‖ηu − ỹ‖22

�
: (23)

By assuming that ‖ỹ‖2 ≠ 0 and η > 0, we find that

u��η� � arg min
u;‖u‖�1

‖ηu − ỹ‖22 �
ỹ

‖ỹ‖2
: (24)

Thus, the solution is

y� � η�
ỹ

‖ỹ‖2
; (25)

where η� is given by

η� � arg min
η

�
min

u;‖u‖�1

�
αf �η� � 1

2
‖ηu − ỹ‖22

��
; (26)

η� � arg min
η>0

�
αf �η� � 1

2
�η − ‖ỹ‖2�2

�
; (27)

since

min
u;‖u‖�1

‖ηu − ỹ‖22 � �jηj − ‖ỹ‖2�2: (28)

Solving Eq. (27) is equivalent to solving Eq. (13) with
ρ̃ � ‖ỹ‖2. In the case where ‖ỹ‖2 � 0 and d > 0, f is not
prox-regular, and Eq. (23) has an infinite number of solutions.
As in Section B, we assume in practice that proxαf �ỹ� � η�

when ‖ỹ‖2 � 0. To sum up, the proximity operator for the
under-sampled measurements is

proxαf �ỹ� �
8<
: η�; if‖ỹ‖2 � 0

η� ỹ
‖ỹ‖2

; otherwise: (29)

This proximity operator for under-sampled intensity
measurements can be computed for any function f that has
a proximity operator in closed form such the Gaussian or
Poisson likelihood described in the previous sections.

5. NUMERICAL EXPERIMENTS

To study the performance of the proposed proximity
operators, we simulated one of the simplest setups of phase
retrieval. Under a Fresnel approximation, we numerically simu-
lated a wave diffracted by a planar real object (here a K �
1024 × 984 pixels image of the USAF resolution test chart
shown Fig. 3) placed at z0 � 0. The diffracted wave at zA
is the reference complex amplitude r that will be estimated
throughout the experiments. We computed the noise inten-
sities dA � jrj � nA, and dB � jHrj � nB at depths zA
and zB , where H is the propagation operator from zA to zB ,
and nA and nB are noise vectors with identical statistics
given by the experimental conditions. The setup parameters
are λ � 633 nm, pixel size �5.3 μm, zA � 1 cm, and
zB � 2 cm.

For each experiment, we built the functions
f A;k�x� � lk�jxj2; dA;k�, and f B;k�x� � lk�jxj2; dB;k�,
according to the considered noise model. We then compared
the performance of the proposed proximity operator proxαf to
that of the classical projection defined by Eq. (6) by estimating
the complex amplitude of the wave x� at zA. To keep the
problem as simple as possible, we only used the knowledge
of measured intensities without additional prior knowledge
(neither regularization nor use of the fact that the image is
non-negative at z0).

In all experiments, the quality of the recovered complex
amplitude x in plane zA is assessed by the mean of the
reconstruction signal-to-noise ratio (SNR):

Fig. 3. USAF-1951 test image used.
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SNR�x� � 10 log10
‖r‖22

‖r − x‖22
: (30)

As the initial wave is real in plane z0 � 0, back-propagating
the estimated wave from zA to z0 is used as a visual assessment
of the reconstruction quality as shown Figs. 4–7. Let us remem-
ber that as the phase retrieval problem is not convex, the sol-
ution depends on the initialization. We chose the initialization
x�0� �

ffiffiffiffiffiffi
dA

p
for every experiment and a different initialization

may lead to a different recovered complex amplitude with a
different SNR.

A. Alternating Projection or Douglas–Rachford?

Algorithm 2: Douglas–Rachford algorithm

1: procedure DR(f A, f B)
2: y�0� �

ffiffiffiffiffiffi
dA

p
and λ ∈ �0; 2� ◃ init. (λ � 1 for all results)

3: for n � 1;…;maxiter do
4: x�n� � proxαf A

�y�n−1��
5: r�n� � 2x�n� − y�n−1�
6: y�n� � y�n−1� � λ�H⊤proxαf B

�Hr�n�� − x�n��
7: return x�maxiter� ◃ Complex amplitude in the zA plane

The use of the proposed operator in Algorithm 1 instead of the
classical projection PA and PB amounts to solving

x� ∈ arg min
x∈CK

�XN
k�1

f A;k�xk�

� inf
y∈CK

�XK
k 0�1

f B;k�yk� �
1

2
‖Hx − y‖22

��
; (31)

which is a relaxed version of Eq. (10). Alternatively, Eq. (10)
can be solved using the DR algorithm described in Algorithm 2
thanks to the following property on the proximity operator of
g�x� � f �H · x� [26]:

H ·H⊤ � Id ⇒ proxαg�x� � H⊤ · proxαf �H · x�; (32)

where Id is the identity matrix.

Fig. 4. Intensity of the estimated wave using the classical
projection (noiseless case) back-propagated from zA to z0.
SNR�x�� � 15.12 dB.

Fig. 5. Intensity of the estimated wave using the proposed
proximity operator (noiseless case) back-propagated from zA to z0.
SNR�x�� � 15.68 dB.

Fig. 6. Intensity of the estimated wave using the classical projection
(noise standard deviation σ � 0.3) back-propagated from zA to z0.
SNR�x�� � 6.37 dB.

Fig. 7. Intensity of the estimated wave using the proposed proxim-
ity operator (noise standard deviation σ � 0.3) back-propagated from
zA to z0. SNR�x�� � 7.60 dB.
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For the Gaussian likelihood as well as for the Poisson like-
lihood, f is not convex. The convergence of both algorithms
cannot be proved even if there exists some convergence results
in the related case of the estimation of the intersection of a
circle and a line [35]. The solution may, therefore, depend
on the starting point. In all the presented experiments, we begin
with the starting amplitude in the zA plane x�0�A �

ffiffiffiffiffiffi
dA

p
.

With the classical projection, DR is more efficient than GS,
as can be seen in Figs. 8 and 9, either with or without noise. In
the presence of noise and using the proposed proximity oper-
ator, the performances of both algorithms are similar; they
become indistinguishable as the amounts of noise level increase.

B. Tuning the Parameters
With the proposed proximity operator, two parameters have
to be tuned: the number of iterations and the parameter α.
All tests with the DR algorithm were done with λ � 1.

Phase retrieval is an ill-posed problem. The number of
unknowns (2K ) is equal to the number of measurements,

meaning that such maximum-likelihood algorithms are subject
to noise amplification. Hence, SNR�x� began to worsen after
some iteration, while the cost was still decreasing, as can be seen
Figs. 9 and 10. The correct prescription of the number of iter-
ations is essential to stop the algorithm at the precise moment
when the wavefront gives the best SNR. This is classically done
in phase retrieval and acts as regularization [36]. To set the
maximum number of iterations, we apply the Morozov prin-
ciple; the algorithm only proceeds as long as

χ2 � 1

2K

�XK
k�1

f A;k�xk� �
XK
k 0�1

f B;k 0 ��Hx�k 0 �
�

< 1: (33)

In our experiments, this criterion seems to stop the algo-
rithm close to the optimum, as can be seen in Figs. 9 and 10.

From Fig. 11, it can be seen that the parameter α has a
strong effect on the speed of convergence but has little influ-
ence on the quality. However, if α is too large (e.g., α � 1 in
Fig. 11), the steps are too large, and the criterion χ2 is well
below one even after the first iteration. As a consequence, α
is set such that χ2 > 1 for the first few iterations.

Such an automatic tuning works only for the Gaussian like-
lihood. In the absence of noise, for the Poisson likelihood and
the classical projection, we select the number of iterations and α
that maximizes SNR�x��.
C. Gaussian Noise
We first compare the classical projection with the proximity
operator derived from the Gaussian likelihood. In the noiseless
case, the proximity operator improves SNR�x�� by about
0.5 dB. However, the visual differences between both recon-
structions back-projected in the z0 plane are barely noticeable,
as shown in Figs. 4 and 5.

For the noisy scenario, the reconstruction error as a function
of the standard deviation of the noise is shown in Fig. 12.
We observe that the use of the proximity operator always im-
proves SNR�x�� by at least 0.5 dB compared to the classical
projection. When the noise is σ � 0.3 or higher (i.e., the
SNR of the measurements is lower than 2.4 dB), the classical

Fig. 8. Comparison of DR and GS performance without noise, us-
ing the classical projection or the proposed operator.

Fig. 9. Comparison of DR and GS performance in noisy conditions
(σ � 1), using the classical projection or the proposed operator.

Fig. 10. Evolution of the cost function for both algorithms and
both projectors.
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projection fails to properly estimate any phase. As consequence,
the twin image appears much more clearly in the back-
propagated field to z0 in the classical projection case than with
the proposed proximity operator, as can be seen in Figs. 6 and 7.

D. Photon Counting
To test the proximity operator derived for the Poisson likeli-
hood, we performed simulations while varying the illumination
and without any background emission (bk � 0), in which case
the proximity operator is given by Eq. (21). We compared its
performance to that of the classical projection for an illumina-
tion varying from 1 × 105 to 1 × 109 photons in each plane.
Compared to the classical projection, the proposed proximity
operator always improves SNR�x��, as can be seen in Fig. 13.
The performance gap with the classical projection becomes
smaller as the number of photons increases.

E. Low-Light Conditions
In low light, most detection devices are plagued by dark
current, which can be modeled by an additive background

emission bk > 0. For illuminations from 1 × 105 to 1 × 109

photons, we simulated the measured intensity dk at pixel
k following a Poisson distribution P, so that

dk � P�jxkj2 � b�; (34)

where the dark current was set to b � 3e− per pixel. The
reconstruction SNR as a function of illumination is shown
in Fig. 14 for the classical projection, the Poisson-likelihood
proximity operator and the Gaussian-likelihood proximity
operator assuming a signal-dependent Gaussian noise with
a mean of b � 3 and an inverse variance wk at pixel k
estimated as

wk � 1∕max�dk; b�: (35)

In Fig. 14, we see that the two proximity operators have a
very similar performance and perform better than the classical
projection. This means that, even with a quite low dark current

Fig. 11. Performance of DR (σ � 1) with the proposed proximity
operator proxαf for different values of α.

Fig. 12. Comparison of both projectors using the DR algorithm as
a function of noise (noise level given in standard deviation and SNR).

Fig. 13. Comparison of classical projection and Poisson proximity
as a function of the number of photons (1 × 105 photons ≈1 photon
per pixel on average).

Fig. 14. SNR�x�� as a function of the number of photons in the
presence of a 3e− dark current.
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(here b � 3), the approximation of a Poisson noise with the
non-stationary Gaussian noise given in Eq. (35) is good.

F. Under-sampled Fringes: Trading SNR for
Resolution
We tested the sum-of-intensity proximity operator derived in
Section 4 in the case where the fringes are not sufficiently
sampled by the detector. Given the adequately sampled
complex amplitude gp ∈ CK 1×K 2 in the detector plane zp,
we simulated �2 × 2� subsampled intensity measurements
d p ∈ RM 1×M 2 with K � 2M using the direct model

gp � Hp · r; (36)

dp;m1 ;m2
� jgp;2m1 ;2m2

j2 � jgp;2m1�1;2m2
j2

� jgp;2m1 ;2m2�1j2 � jgp;2m1�1;2m2�1j2 � np; (37)

whereHp is the propagation operator from plane z1 to zp. As in
the previous experiments, we estimated the complex amplitude
x� in plane z1.

The strategy without regularization is only viable when
there are sufficiently many measurements �P ×M 1 ×M 2� as
compared to the number of unknowns �2 × K 1 × K 2 �
8 ×M 1 ×M 2�. To increase the number of measurements,
we modified the proposed setup and estimated x� in plane
z1 from P � 8 measurements.

The maximum-likelihood solution in this case is given by

x� ∈ arg min
x∈CK

X8
p�1

XK
k�1

f p;k��Hp · x�k�: (38)

It is solved by means of the parallel proximal algorithm
(PPXA) [37], which is a generalization of the DR algorithm
that minimizes the sum of more than two functions.

We simulated intensity measurements for eight planes taken
at z1 � 1 cm, z2 � 1.5 cm, z3 � 2 cm, z4 � 2.5 cm,
z5 � 3 cm, z6 � 3.5 cm, z7 � 4 cm, and z8 � 4.5 cm.
These measurements were corrupted with an additive
Gaussian noise of variance σ � 0.5 (corresponding
to SNR� � � −2.1 dB).

We have estimated the 1024 × 968 pixels complex ampli-
tude x� in the plane z1 from these eight 512 × 484 pixels in-
tensity measurements using the proposed proximity operator
for the sum of intensities with f derived for the Gaussian
likelihood as defined in Eq. (16). A zoom on the central part
of the wave back-propagated to z0 is presented in Fig. 15. It
illustrates the effectiveness of the proposed proximity operator
to recover fine details and increase the resolution. This can be
compared with two reconstructions without super-resolution
using the same PPXA, but with the proximity operator derived
in Section C. One, shown on Fig. 16, was done with the same
measurements (8 ×M 1 ×M 2 measurements for 2 ×M 1 ×M 2

unknowns). The other, shown on Fig. 17, is using only the
measurements in the two planes z1 and z2 to get the same
number of measurements as the unknowns (2 ×M 1 ×M 2).
Compared to these non-super-resolved reconstructions, the res-
olution improvement is obvious. However, this improvement is
acquired at the cost of a moderate increase in noise compared
to the reconstruction shown in Fig. 16. Indeed, the non-
super-resolved reconstruction appears less noisy as the ratio

Fig. 15. Central 250 × 250 pixels of the test chart recovered from
the eight planes measurements using the proximity operator for sum-
of-intensity measurements and back-propagated to z � 0.

Fig. 16. Central 125 × 125 pixels of the test chart recovered from
the eight planes measurements using the proximity operator presented
in Section C and back-propagated to z � 0.

Fig. 17. Central 125 × 125 pixels of the test chart recovered from
the two planes measurements using the proximity operator presented
in Section C and back-propagated to z � 0.
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of the number of unknowns over the number of measurements
is more favorable. This reconstruction noise is similar to in the
non-super-resolved reconstruction, using only two planes to get
the same number of measurements as the unknowns that are
shown in Fig. 17.

6. CONCLUSION

We considered the problem of the phase retrieval from
noise intensity measurements. From the maximum-likelihood
formulation, we derived proximal operators for intensity
measurements corrupted with Gaussian noise or Poisson noise.
We further expanded these proximity operators for cases where
fringes are not properly sampled. When plugged into the GS
algorithm in place of the classical projection, it showed superior
results. As it can be plugged into any projection-based
algorithm, it can provide an improvement of the performance
for many phase-retrieval algorithms without changing the core
of the optimization procedure.
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