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ABSTRACT

We present a method for the unsupervised segmenta-
tion of textured images using Potts functionals, which are a
piecewise-constant variant of the Mumford and Shah func-
tionals. We propose a minimization strategy based on the
alternating direction method of multipliers and dynamic pro-
gramming. The strategy allows us to process large feature
spaces because the computational cost grows only linearly in
the feature dimension. In particular, our algorithm has more
favorable computational costs for high-dimensional data than
graph cuts. Our feature vectors are based on monogenic
curvelets. They incorporate multiple resolutions and direc-
tional information. The advantage over classical curvelets
is that they yield smoother amplitudes due to the envelope
effect of the monogenic signal.

Index Terms— Texture segmentation, Potts functional,
piecewise constant Mumford and Shah functional, monogenic
curvelets.

1. INTRODUCTION

The problem of segmenting textured images is a basic, yet
challenging, image-processing task which appears in various
contexts. Examples of recent papers on the topic are [1, 2] in
biomedical imaging as well as [3, 4] in computer vision. The
common strategy is to first create a feature vector for each
pixel of the image. This yields a multicomponent image of
local texture features that is then used to drive the segmenta-
tion process.

There is a multitude of approaches to the determination
of texture features of which we shall only mention the pri-
mary ones. The early ones are based on local gray-level co-
occurences and autocorrelations, as documented in the survey
[5]. In many articles, filtering approaches such as Gabor fil-
ters [6] and wavelet frames [7] are used. (We refer to [8]
for a comparative study and for many additional references.)

The research leading to these results has received funding from the Eu-
ropean Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant agreement no. 267439 and the
German Federal Ministry for Education and Research under SysTec Grant
0315508.

Fig. 1: Segmentation of textured images using our method.

Further approaches are based on local binary patterns [4] and
structure tensors with nonlinear diffusion [9]. The second step
is the segmentation itself. Classical techniques are K-means
clustering [6, 7] and vector quantization [8]. More recent
works employ the mean-shift algorithm [10], level-set meth-
ods [9], or minimization of convex energy functionals [11].

We here rely on the Potts model [12, 13] which is fre-
quently used in the context of unsupervised image segmenta-
tion. Its continuous domain formulation is given by

u∗ = argmin
u

γ ∥∇u∥0 + ∥u− F∥22. (1)

The data F is a multicomponent image taking values in Rs

and the data fidelity is measured by an L2 norm. The label-
ing function u is piecewise constant. Its jump or disconti-
nuity set encodes the boundaries of the corresponding seg-
mentation. The symbol ∥∇u∥0 denotes the total length of the
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segment boundaries induced by u. The empirical model pa-
rameter γ > 0 controls the balance between data fidelity and
the regularizing term. A state-of-the-art minimization strat-
egy is based on graph cuts [14]. This type of algorithm has
also been deployed for texture segmentation [15]. The major
drawback of graph cuts is that they become computationally
demanding for large feature vectors. In fact, the complexity
grows exponentially in the dimension s of the feature vector.
This makes graph cuts less appealing for texture segmenta-
tion since the feature vectors are typically high-dimensional
in order to get good discriminative power. To circumvent this
problem, the authors of [15] manually preselect between two
and four feature components before applying the graph cuts
algorithm.

In this paper, we propose a minimization strategy for the
Potts functional which is computationally attractive even for
high-dimensional feature vectors. Its computational costs
grow only linearly in the dimension of the feature space. This
allows us to process feature vectors of dimensions beyond 150
(as we did in Figure 1). Our strategy combines an ADMM
splitting of a discretization of (1) and dynamic programming.
We also propose to use feature vectors made of amplitudes of
monogenic curvelet coefficients [16]. Curvelets are a family
of multiscale atoms which increase their anisotropy at fine
scales [17]. They have been used successfully as feature vec-
tors [18, 19]. The central advantage of monogenic curvelets
over classical curvelets is that the amplitudes of the coeffi-
cients are less affected by ringing effects. This is due to the
envelope effect of the monogenic signal [20, 16].

Our article is organized as follows: In Section 2, we study
Potts functionals. We describe a fast algorithm that deals with
high-dimensional feature vectors. In Section 3, we explain
how to derive feature vectors using monogenic curvelets. Fi-
nally, we show the performance of the proposed method for
texture mosaics as well as for natural images in Section 4.

2. THE POTTS MODEL FOR UNSUPERVISED
SEGMENTATION

In this section we present a fast computational approach to the
Potts problem (1) for vector-valued images. The approach is
particularly suitable for high-dimensional feature vectors. We
first discretize the jump term ∥∇u∥0 in (1) by

∥∇u∥0 =
∑

i,j

∑

(a,b)∈N

ωa,b [ui,j,: ̸= ui+a,j+b,:]. (2)

Here ui,j,: is a vector in Rs sitting at the pixel (i, j) and
[v ̸= w] denotes the Iverson bracket which takes value 0 if
vk = wk for all k = 1, ..., s, and value 1 otherwise. The
neighborhood relation N and the nonnegative weights ωa,b

define a discrete boundary length of the corresponding dis-
crete partitions. For N = {(0, 1), (1, 0)} and ω0,1 = ω1,0 =
1, we get the simple (anisotropic) discretization which cor-

responds to ∇uij = (uij − ui,j−1, uij − ui−1,j). This dis-
cretization measures the boundary length of the partitions in
the (anisotropic) Manhattan metric. For our experiments, we
use the 8-neighborhood N = {(1, 0), (0, 1), (−1, 1), (1, 1)}
with diagonal weights ω1,1 = ω−1,1 = (1−

√
2
2 ), and vertical

and horizontal weights ω1,0 = ω0,1 = (
√
2 − 1). The reason

for using discretizations of the form (2) is that, in contrast to
the simple discretization, they produce visually more pleas-
ing and more isotropic reconstructions. Using this discrete
version of ∥∇u∥0, we rewrite the discrete Potts functional as

u∗ = argmin
u∈Rm×n×s

{
γ
∑

i,j

∑

(a,b)∈N

ωa,b · [ui,j,: ̸= ui+a,j+b,:]

+
∑

i,j,k

(ui,j,k − Fi,j,k)
2
}
. (3)

Here, the data is given by the m × n feature image F which
takes its values in Rs.

Our strategy for solving problem (3) is as follows. We
consider the consensus form (see [21]) of (3), construct the
augmented Lagrangian, and iteratively minimize for one of
the respective variables while keeping the others fixed. Then,
after some manipulations, we get the algorithm
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uk+1 = argminu
4γωc

1+6µ∥∇1u∥0 + ∥u− u′∥22 ,
wk+1 = argminw

4γωd

1+6µ∥∇12w∥0 + ∥w − w′∥22 ,
vk+1 = argminv

4γωc

1+6µ∥∇2v∥0 + ∥v − v′∥22 ,
zk+1 = argminz

4γωd

1+6µ∥∇21z∥0 + ∥z − z′∥22 ,
λk+1
i = λk

i + µai,

(4)

where ωd = (1 −
√
2
2 ) and ωc = (

√
2 − 1). The symbols

∇1,∇2,∇12,∇21 denote the differences with respect to the
vectors (1, 0), (0, 1), (−1, 1), (1, 1). Here, the data are

u′ = r[f + 2µ(vk + wk + zk) + 2(−λk
1 − λk

2 − λk
3)],

w′ = r[f + 2µ(uk+1 + vk + zk) + 2(λk
2 + λk

4 − λk
6)],

v′ = r[f + 2µ(uk+1 + wk+1 + zk) + 2(λk
1 − λk

4 − λk
5)],

z′ = r[f + 2µ(uk+1 + vk+1 + wk+1) + 2(λk
3 + λk

5 + λk
6)],

where r = 1
1+6µ . The updates ai are given by

a1 = uk+1 − vk+1, a2 = uk+1 − wk+1,
a3 = uk+1 − zk+1, a4 = vk+1 − wk+1,
a5 = vk+1 − zk+1, a6 = wk+1 − zk+1.

We observe that the first minimization problem in (4) is sepa-
rable into n subproblems (j = 1, . . . , n) of the form

uk+1
:,j = arg min

h∈Rm

4γωc

1 + 6µ
∥∇h∥0 + ∥h− u′

:,j∥22. (5)

These are n univariate problems, one for each column. Simi-
larly, the third problem in (4) leads to m univariate problems
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with respect to data v′, one for each row. The second and
fourth minimization problem in (4) lead to univariate prob-
lems on the diagonals for data w′ and z′, respectively. The
crucial point is that all these subproblems are univariate Potts
problems which can be solved exactly in quadratic runtime by
a method inspired by the dynamic program of [22].

We initialize the ADMM iteration with a small positive
coupling parameter µ0 > 0 and increase it during the itera-
tion by a factor τ > 1. Hence, µ is given by the geometric
progression

µ = µk = τkµ0. (6)

This strategy assures that, while u and v can evolve quite in-
dependently at the beginning of the procedure, they will be
close to each other at the end. We stop iterating when the
norm of the difference of u and v falls below a certain toler-
ance.

3. FEATURE VECTOR OF MONOGENIC
CURVELET AMPLITUDES

In this paper, our feature vectors are defined by monogenic
curvelets [16] which are directional wavelets that increase
their anisotropy as scale gets finer. They behave like the clas-
sical curvelets of [17] at fine scales and like the monogenic
wavelets of [23, 24] at coarse scales. We give a short descrip-
tion of monogenic curvelets. For details we refer to [16].

The mother curvelet ga at scale a > 0 is defined via its
Fourier transform given by

ĝa(r,ω) = W (ar)V

(
ω√
a

)
. (7)

Here, (r,ω) denotes polar coordinates, and W,V are radial
and angular window functions, respectively; both are com-
pactly supported. The curvelets are such that the finer the
scale, the larger the radial bandwidth and the smaller the an-
gular bandwidth. At coarse scales, the angular windowing
becomes obsolete and so we set V ≡ 1. Let us denote the real
part of a curvelet as βa00 = Re ga and let the (real-valued)
curvelet family βabθ be given by

βabθ(x) = βa00(ρθ(x− b)).

Here, ρθ is a counterclockwise rotation by the angle θ and b ∈
R2. The monogenic curvelet coefficient cabθ of an image f at
scale a, at location b, and at angle θ consists of the evaluation
of f at βabθ and their Riesz transforms R1βabθ and R2βabθ

so that

cabθ = (⟨f,βabθ⟩, ⟨f,R1βabθ⟩, ⟨f,R2βabθ⟩).

The Riesz transform Rν is the singular integral operator
whose Fourier multiplier is given by R̂νf(ξ) = −i ξν

|ξ| f̂(ξ).
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Fig. 2: Monogenic curvelet filters on a fine scale. From left to
right: βa00, R1βa00, and R2βa00. (Spatial axes zoomed for
reasons of displayability).

Using the monogenic curvelet coefficients cabθ, we build
a feature out of the amplitudes of the coefficients given by

Aabθ =
√
⟨f,βabθ⟩2 + ⟨f,R1βabθ⟩2 + ⟨f,R2βabθ⟩2.

In the discrete setup, we sample the location b at the pixel
grid of the image f and the scale at half-octave steps aj =
2−j/2. We use 7 octaves, thus, 14 scales in total. At the two
finest octaves, we use 8 orientations, at the next two octaves 4
orientations, and so on. Summing all up, the feature vector at
each pixel consists of s = 2 · (8+8+4+4+2+2+1) = 58
entries. For color images, we create such a feature vector
for all three color channels. We then concatenate the three
partial feature vectors which in total gives us feature vectors
of length s = 3 · 58 = 174.

4. EXPERIMENTAL RESULTS

In our experiments, we first create a feature vector of mono-
genic curvelet amplitudes as described in Section 3. Here we
use 58 channels for the gray value images and 174 channels
for color images. For the segmentation of the resulting feature
vector, we employ the algorithm described in Section 2. In all
our experiments, we use µk = 0.01 · γ · 2k for the coupling
parameter in (6). The stopping criterion for the algorithm is
∥u − v∥22 ≤ TOL · ∥F∥22 with the tolerance TOL = 10−10.
The model parameter γ is chosen empirically.

Note that we do not employ any smoothing steps or non-
linear transform [8] for generating the feature image. In our
case, the amplitudes of the monogenic curvelets are already
sufficiently smooth and the Potts model provides sufficient
regularization so that these steps were not needed.

In Figure 3 we show the application of our method to
monochrome and colored texture mosaics1. For the two sim-
pler texture patches (first and fourth mosaic), our segmenta-
tion almost perfectly gets the boundaries of the groundtruth.
The two central images are more challenging but we still ob-
tain satisfactory results.

We present in Figure 1 the segmentation of natural im-

1The first two texture mosaics are taken from the comparative study
[8], the third one from the Prague Texture Segmentation Datagenerator and
Benchmark [25], and the fourth one from [26].
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Fig. 3: Top: Texture mosaics. Bottom: Our method using γ = 0.14, 0.13, 0.12, and 0.8, respectively. Our method segments the
left and the right image almost perfectly. Even on the challenging central images, the major structures are segmented well.

ages2. We observe that the differently textured regions are
nicely separated.

5. CONCLUSION

We have presented a novel approach to the segmentation of
textured images. We used feature vectors based on the am-
plitude of monogenic curvelets. For the segmentation of the
high-dimensional feature images, we used a fast computa-
tional strategy for the Potts model. Tests carried out on syn-
thetic texture images as well as on real color images show the
potential of our approach.
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