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We propose a signal analysis tool based on the sign (or the phase) of complex wavelet 
coefficients, which we call a signature. The signature is defined as the fine-scale limit 
of the signs of a signal’s complex wavelet coefficients. We show that the signature 
equals zero at sufficiently regular points of a signal whereas at salient features, such 
as jumps or cusps, it is non-zero. At such feature points, the orientation of the 
signature in the complex plane can be interpreted as an indicator of local symmetry 
and antisymmetry. We establish that the signature rotates in the complex plane 
under fractional Hilbert transforms. We show that certain random signals, such as 
white Gaussian noise and Brownian motions, have a vanishing signature. We derive 
an appropriate discretization and show the applicability to signal analysis.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The determination and discrimination of salient features, such as jumps or cusps, is a frequently occurring 
task in signal and image processing [20,27,29,34,36]. In many classical approaches, it is assumed that the 
interesting features of a signal are located at the points of low regularity. In this context, local regularity 
is measured in terms of the (fractional) differentiability order, e.g., in the sense of local Hölder, Sobolev 
or Besov regularity [1,6,19,34]. Since such measures of smoothness only rely on the modulus of wavelet 
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coefficients, they do not take into account sign (or phase) information. However, classical results in Fourier 
and wavelet analysis suggest that the signs of the wavelet coefficients contain rich information about a 
signal’s structure. Logan [30] has shown that bandpass signals are characterized, up to a constant, by their 
zero crossings, which in turn are determined by the sign changes. The well known results by Oppenheim 
and Lim [37] indicate that sign information is even more important for the reconstruction of images than 
the modulus. If the amplitude of the Fourier transform of an image is combined with the sign of the Fourier 
transform of another image then the resulting reconstruction is structurally much closer to the second image, 
whereas the structure of the first one is hardly visible. Similar observations have been made for complex 
wavelet coefficients [15,40]. It has been shown by Jaffard [21,22] that a bounded signal becomes unbounded 
almost surely if the signs of its wavelet coefficients are randomly perturbed. This suggests that perturbations 
of the wavelet coefficients’ signs can significantly alter the shape of a signal. But since the perturbation only 
affects the sign information this change is not taken into account by a purely modulus-based signal analysis. 
Let us illustrate this by an example of Meyer [35]. Consider the functions f(x) = sgn x and g(x) = 2 log |x|. 
Since f and g are related by the Hilbert transform, their wavelet coefficients are equal with respect to 
their order of magnitude. Although the singularities of f and g are structurally very different, they are not 
delineated by a purely modulus-based signal analysis.

Despite their high information content, the signs of the wavelet coefficients have received less attention 
than the moduli in signal and image analysis. First indications for the usability of wavelet signs in signal 
analysis have been given by Kronland-Martinet, Morlet, and Grossmann [28]. They observed that the lines 
of constant sign in the wavelet domain converge towards the singularities. Reconstruction algorithms from 
sign/phase information have been presented in [33] for wavelet coefficients and [45] for the short time Fourier 
transform. The phase of the short time Fourier transform has been recently analyzed in [2,23]. In [36,46], 
phase congruency was introduced for signal analysis based on the sign information of Fourier coefficients. 
Kovesi [27] added the multiscale aspect to phase congruency using log-Gabor wavelets. Phase congruency 
is especially useful for contrast invariant edge detection [27]. It has also been shown that phase congruency 
provides valuable information about local symmetries of a feature point, e.g. symmetric cusps or antisym-
metric steps [27,36,46]. Similar observations have been made by Holschneider for the fine scale behavior of 
the wavelet phase [17, Ch. 4.3]. On the flipside, phase congruency lacks so far a rigorous foundation.

In this paper, we propose a new approach to signal analysis based on the sign (or phase) of complex 
wavelet coefficients. Our analyzing wavelets belong to the class of complex wavelets; this means that their 
real part and their imaginary part are Hilbert transforms of each other. Such analyzing functions can be 
traced back to the seminal work of Gabor [11]. They have been applied successfully to many signal and 
image processing applications [10,25,26,39,42]. Here, we investigate the fine scale behavior of the signs of 
complex wavelet coefficients. More precisely, we consider the complex-valued quantity

σf(b) = lim
a→0+

sgn 〈f, κa,b〉 = lim
a→0+

〈f, κa,b〉
| 〈f, κa,b〉 |

,

where f is a real-valued signal, κ is a complex wavelet, a > 0 denotes the scale, and b ∈ R the location. If 
the limit does not exist, we set σf(b) to 0. We call the quantity σf(b) the signature of f at location b. The 
basic idea is that a nonzero signature indicates the presence of a salient point of the signal f , e.g. a step or a 
cusp, whereas at regular points, the signature equals zero. We first show that the signature is equal to zero if 
the signal f is locally polynomial around b. We then establish that the signature is ±1 for cusp singularities 
of power type whereas it is equal to ±i for step singularities. Thus, the orientation of the signature within 
the complex plane may be interpreted as an indicator of local symmetry or antisymmetry. We further show 
that the singular support, which consists of all points where the signal is not locally C∞, does in general 
not coincide with the support of signature. Thus, a singularity in the classical sense need not coincide with 
a singularity in the sense of signature. We further show that Gaussian white noise and fractional Brownian 
motion contain no salient points in the sense of the signature. We propose a suitable discretization and 
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validate the theoretically developed concepts by numerical experiments. Finally, we provide connections of 
our discretization to phase congruency.

1.1. Organization of this article

The structure of this article is as follows. In Section 2 we introduce the signature and present some of its 
basic properties. We compute the signature of regular points of a signal in Section 3 and of singular points 
such as jumps and cusps in Section 4. We investigate the behavior of signature under the fractional Hilbert 
transform in Section 5. In Section 6 we show that certain random signals have a vanishing signature. In 
Section 7, we establish relations to the singular support and give a geometric interpretation. We propose a 
discretization and illustrate our theoretical results by numerical experiments in Section 8.

2. Definition of signature and its basic properties

In this section, we introduce the concept of signature and state its basic properties. We start with some 
preliminary notations. We define the Fourier transform of a Schwartz function f ∈ S (R) by

F (f)(ω) = f̂(ω) =
∫
R

e−iωxf(x)dx.

Likewise, we use the above notation for the usual extension to the space of tempered distributions S ′(R). 
Furthermore, F−1(f) and f∨ denote the corresponding inverse Fourier transform of f . We define the 
operators of translation by r ∈ R, Tr, and dilation by ν ∈ R \ {0}, Dν , by

Trf(x) = f(x− r) and Dνf(x) = 1√
ν
f
(x
ν

)
,

respectively.

2.1. Definition of the signature

Our analysis will rely on wavelets with a one-sided, compactly supported, non-negative frequency spec-
trum. For brevity, we call this class signature wavelets.

Definition 2.1. We call a non-zero function κ ∈ S (R, C) a signature wavelet if κ has a one-sided, compactly 
supported, and non-negative Fourier transform, i.e.,

supp κ̂ ⊆ [c, d], 0 < c < d < ∞, and κ̂(ω) ≥ 0, for all ω ∈ R.

Since their Fourier transforms vanish around zero, signature wavelets have infinitely many vanishing 
moments. The class of signature wavelets is invariant under convolution operators whose kernels have a 
positive Fourier transform. In particular, the class is invariant under fractional Laplacians (−Δ) r

2 which are 
defined by

F{(−Δ) r
2 f} = | · |r f̂ , for r ∈ R. (1)

The fractional Laplacians are well defined for all r ∈ R on the tempered distributions modulo the polynomials 
P, which we denote by S ′/P.



202 M. Storath et al. / Appl. Comput. Harmon. Anal. 42 (2017) 199–223
Fig. 1. A Meyer-type signature wavelet κ (left) and its Fourier transform κ̂ (right).

The real part and the imaginary part of a signature wavelet are Hilbert transforms of each other (up 
to a factor −1). Complex-valued functions with this property are often called analytic signals. The wavelet 
system associated with a signature wavelet κ is defined as the family of functions

κa,b(x) = 1√
a
κ

(
x− b

a

)
, where a > 0 and b ∈ R.

An example of a signature wavelet is given by the inverse Fourier transform of the (one-sided) Meyer window 
W , i.e.,

κ(x) = F−1(W )(x), (2)

where W is given by

W (ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cos
(
π
2 g(5 − 6ω)

)
, for 2

3 ≤ ω < 5
6 ,

1, for 5
6 ≤ ω < 4

3 ,

cos
(
π
2 g(3ω − 4)

)
, for 4

3 ≤ ω < 5
3 ,

0, else,

(3)

with a smooth function g satisfying g(ξ) = 0 for ξ ≤ 0, g(ξ) = 1 for ξ ≥ 1, and g(ξ) +g(1 −ξ) = 1 otherwise. 
Particular choices for g are given in [4]. The graph of such a κ is depicted in Fig. 1. We employ this wavelet 
in the numerical experiments in Section 8.

The quantity we are interested in is the fine scale limit of the signs of the complex wavelet coefficients. 
As it involves the signs of the wavelets coefficients we call this quantity signature. Recall that the sign of a 
complex number is defined by

sgn z = z

|z| , for z ∈ C \ {0},

and by sgn 0 = 0.

Definition 2.2. Let f ∈ S ′(R; R) and let κ be a signature wavelet. We define the signature, σf , of f at 
b ∈ R by

σf(b) = lim
a→0+

sgn 〈f, κa,b〉 , (4)

if the limit exists, and by σf(b) = 0 otherwise.

The convergence in (4) is with respect to the standard topology in C. The signature σf(b) is either equal 
to zero or it is a complex number of modulus 1.
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The signature may depend on the choice of the signature wavelet, as the following example illustrates. 
Consider the Weierstraß function (see e.g. [13])

f(x) =
∞∑

n=0
rn cos(tnx), where 0 < r < 1 and rt ≥ 1,

and the zero sequence am = t−m, m ∈ N. By taking Fourier transforms, we obtain

〈f, κam,0〉 = π
∞∑

n=0
rn
〈
δ−tn + δtn , Da−1

m
κ̂
〉

= t−
m
2 π

∞∑
n=0

rnκ̂(tn−m).

If supp κ̂ ⊂ ]1, t[, we have κ̂(tk) = 0 for all k ∈ Z, and consequently 〈f, κam,0〉 = 0. Thus, if sgn 〈f, κa,0〉
converges, then it must necessarily converge to zero. It follows that

σf(0) = 0 with respect to κ. (5)

Now let κ̃ be a signature wavelet such that ̂̃κ(ω) = 1 for ω ∈ [1, t]. Then 
〈
f, κ̃am,0

〉
> 0 and sgn 〈f, κ̃am,0〉 = 1

and hence

σf(0) = 1, with respect to κ̃.

The example shows that the signature is in general not independent of the choice of the wavelet. However, 
we shall see that the signature does not depend on the signature wavelet in many cases of practical im-
portance. Actually, almost all assertions made in this paper are independent of the choice of the signature 
wavelet. Therefore we omit to the explicit dependance of the employed wavelet in the notation of signature.

2.2. Basic properties

We state some basic properties of signature. Signature commutes with translations and with dilations, 
i.e.,

σ(Trf)(b) = (σf)(b− r) and σ(Dνf)(b) = (σf)(νb). (6)

Since the Fourier transform of a signature wavelet κ vanishes in a neighborhood of the origin, we have that

〈p, κ〉 = 0, for all polynomials p. (7)

Therefore, the signature is well defined on the tempered distributions modulo polynomials S ′/P. If the 
signature is non-zero, then the real part or the imaginary part of 〈f, κa,b〉 has a constant sign for a small 
enough. Another useful property is that

σ(tf) = sgn(t)σf, for all t ∈ C. (8)

The next property is useful for the computation of signatures.

Lemma 2.3. Let κ be a signature wavelet and let b ∈ R. Further let f, g ∈ S ′(R; R) be two tempered 
distributions such that σf(b) �= 0 and 〈g, κa,b〉 ∈ o (〈f, κa,b〉). (Here, the Landau symbol o refers to a → 0.) 
Then

σ(f + g)(b) = σf(b).
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Proof. From σf(b) �= 0, it follows that 〈f, κa,b〉 �= 0 for sufficiently small a. Therefore,

〈f + g, κa,b〉
|〈f + g, κa,b〉|

=
〈f, κa,b〉

(
1 + 〈g,κa,b〉

〈f,κa,b〉

)
∣∣∣〈f, κa,b〉

(
1 + 〈g,κa,b〉

〈f,κa,b〉

)∣∣∣ −→a→0
σf(b),

which completes the proof. �
From the above lemma, it follows in particular that σ(f + g) = σf for all bandlimited functions g.

3. The signature at regular points

In this section, we compute the signature of a signal at some regular points. We start with some elementary 
examples.

Example 3.1.

1. By (7), polynomials have signature equal to zero on the entire real line.
2. For the cosine function we get

〈cos, κa,b〉 = 〈ĉos, (κa,b)∨〉 = π 〈δ1 + δ−1, (κa,b)∨〉 = π
√
a e−ibκ̂(a). (9)

Since κ̂(a) = 0 for sufficiently small a, we obtain

σ(cos)(b) = 0,

for all b ∈ R. A similar argument applies to the sine function and to arbitrary trigonometric polynomials. 
Their signature is identically 0 as well.

3. In general, since the Fourier transform of a signature wavelet κ vanishes in a neighborhood of the origin, 
we obtain for any band-limited tempered distribution f and for each b ∈ R,

sgn 〈f, κa,b〉 = sgn 〈f∨, κ̂a,b〉 = 0, for sufficiently small a.

Hence, the signature of a band-limited tempered distribution is equal to zero for every b ∈ R.

In the following, we say that a function f is of polynomial growth if there exists an N ∈ N such that 
f ∈ O(|x|N ) as |x| → ∞. Next, we show that a signal of polynomial growth has signature equal to zero at 
a point where all derivatives are equal to zero.

Theorem 3.2. Let f be a real-valued, locally integrable function of polynomial growth. Further assume that 
f is smooth in a neighborhood of b ∈ R. If for some k0 ∈ N0, f (k)(b) = 0, for all k ≥ k0, then

σf(b) = 0.

Thus, if f coincides on an open set U ⊂ R with a polynomial then σf(b) = 0, for every b ∈ U . In particular, 
we have suppσf ⊆ supp f .

We first prove that functions with infinitely many vanishing moments have an unbounded sequence of 
sign changes. For the special case of functions whose Fourier transforms vanish in a neighborhood of the 
origin such a statement can be deduced from the results in [8]. For the general case, we prove the following.
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Lemma 3.3. Let g �= 0 be a real-valued continuous function of rapid decay such that∫
R

g(x)xk dx = 0, for all k ∈ N0. (10)

Then g does not have compact support. Moreover, there exists an unbounded monotone sequence of sign 
changes, i.e., there exists {xn}n∈N such that |xn| → ∞, sgn g(x2n) = 1 and sgn g(x2n+1) = −1.

Proof. First assume that g has compact support. As polynomials are dense in L2(supp g), g cannot be 
orthogonal to all polynomials which contradicts (10). This shows the first assertion.

For the second assertion, assume to the contrary that there does not exist a sequence {xn}n∈N with the 
claimed properties. Then we can find an a > 0 such that g neither changes sign on ]−∞, −a[ nor on ]a, ∞[. 
The continuity of g implies that∣∣∣∣∣∣

a∫
−a

(x
a

)m
g(x) dx

∣∣∣∣∣∣ ≤ 2a max
x∈[−a,a]

|g(x)| =: C, ∀m ∈ N0, (11)

where C ≥ 0. Since g is continuous and not compactly supported, we find an interval [c, d] in R \ [−a, a]
and a constant K > 0 such that such that |g| > K on [c, d]. Suppose then, without loss of generality, that 
[c, d] ⊂ ]a, ∞[ and that g > K on [c, d]. Then there exists an m0 ∈ N such that for m ≥ m0∫

[c,d]

(x
a

)m
g(x) dx > C.

If g ≥ 0 on ]−∞, −a[, then choose an even m ≥ m0, and if g ≤ 0 on ]−∞, −a[, then choose an odd m ≥ m0. 
In either case, ∫

R\[−a,a]

(x
a

)m
g(x) dx > C,

which, together with (11), implies that ∫
R

(x
a

)m
g(x) dx > 0,

contradicting the vanishing moment condition (10). This completes the proof. �
Proof of Theorem 3.2. As signature commutes with translations (cf. (6)), we may assume without loss of 
generality that b = 0.

We first assume that k0 = 0. Since f has polynomial growth, there exists an N ∈ N such that f ∈ O(|x|N )
as |x| → ∞. We define a function H : R → C by

H(u) = uN+1
∫
R

f(x)κ(ux) dx, (12)

and show that H has infinitely many vanishing moments. To this end, we consider the following integrals 
for k ∈ N0:
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∫
R

H(u)uk du =
∫
R

∫
R

f(x)κ(ux) dxuk+N+1 du =
∫
R

∫
R

κ(ux)uk+N+1 du f(x) dx. (13)

Next, we justify the interchange of the order of integration. By a change of variables u = y
x , for x �= 0, we 

get for the absolute value of the inner integral the following estimate:∫
R

|κ(ux)||u|k+N+1 du = 1
|x|k+N+2

∫
R

|κ(y)||y|k+N+1 dy ≤ Ck

|x|k+N+2 ,

where Ck is a constant depending only on k. Therefore, we obtain∫
R

∫
R

|κ(ux)| · |u|k+N+1 du |f(x)| dx ≤ Ck

∫
R

|f(x)|
|x|k+N+2 dx < ∞, for all k ∈ N0. (14)

To justify the last inequality in (14), let ε > 0. Then, since f (l)(0) = 0 for all l ∈ N0,

ε∫
−ε

|f(x)|
|x|k+N+2 dx < ∞.

Furthermore, as f ∈ O(xN ), ⎛⎝ −ε∫
−∞

+
∞∫
ε

⎞⎠ |f(x)|
|x|k+N+2 dx < ∞.

Hence, the right hand side of (13) exists in absolute value and thus the interchange of the order of integration 
in (13) is justified by the Fubini–Tonelli theorem.

Now, since all moments of the signature wavelet κ vanish, we get for x �= 0 that∫
R

κ(ux)uk+N+1 du = 0.

Substitution into (13) yields∫
R

H(u)uk du =
∫
R

∫
R

κ(ux)uk+N+1 du f(x) dx = 0, for all k ∈ N0. (15)

We furthermore observe that H is a continuous function of rapid decay. Thus ReH and ImH are con-
tinuous functions of rapid decay all of whose moments vanish.

If H = 0 then sgnH(u) = sgn 〈f, κ1/u,0〉 = 0. Hence the fine scale limit of the signs equals 0 which 
implies that σf(0) = 0. If H �= 0 then at least one of the function ReH and ImH is not identically equal to 
zero. First assume that both ReH �= 0 and ImH �= 0. Then Lemma 3.3 implies that there is an unbounded 
monotone sequence {un}n∈N of sign changes of ReH, that is,

sgn ReH(un) =
{

+1, n even;
−1, n odd.

Analogously, there exists an unbounded monotone sequence {vn}n∈N of sign changes of ImH. Since κ is a
Hermitian function and f is real-valued, H is also Hermitian, i.e.,
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H(−u) = H(u).

By this symmetry property, we may assume that both sequences {un} and {vn} are increasing and tend 
to +∞. Thus, the limit limu→∞ sgnH(u) cannot exist. If the imaginary part of H is identically zero then 
sgnH(u) = sgn ReH(u), thus the limit limu→∞ sgnH(u) does not exist. Likewise, the limit does not exist 
if the real part of H is identically zero.

To conclude the proof, we observe that for u > 0

sgn
〈
f, κ 1

u ,0

〉
= sgn

⎛⎝|u| 12 ∫
R

f(x)κ(ux) dx

⎞⎠ = sgnH(u).

Thus, with a = 1
u , the limit

lim
a→0+

sgn 〈f, κa,0〉 = lim
u→∞

sgn
〈
f, κ 1

u ,0

〉
either does not exist or equals zero. In either case, σf(0) = 0.

If k0 �= 0, we let p be a polynomial of order k0 − 1 such that p(k)(0) = f (k)(0) for all k ≤ k0 − 1. Then all 
derivatives of f − p vanish at 0 which implies that σ(f − p)(0) = 0. Since 〈f − p, κa,b〉 = 〈f, κa,b〉, we obtain 
σ(f − p)(0) = σf(0) = 0, which completes the proof. �

Next we show that the signature of a homogeneous function vanishes away from the origin. Recall that 
a homogeneous function of degree γ ∈ R is a function which satisfies

f(tx) = tγf(x), for all t > 0.

Proposition 3.4. Let f be a homogeneous function of degree γ > −1. Then,

σf(b) = 0, for all b �= 0. (16)

Proof. Sine f is a homogeneous function of degree γ > −1 it is locally integrable on R. Thus, f defines a 
distribution on the real line. By [18, Theorems 7.1.16 and 7.1.18], f∨ is homogeneous of degree −γ− 1, and 
it is a locally integrable function on R \ {0}. Let κ be a signature wavelet and let b �= 0 be fixed. For any 
a > 0, we have that

〈f, κa,b〉 = 〈f∨, κ̂a,b〉 =
√
a

∫
R

f∨(ω)κ̂(aω)e−ibω dω = a−
1
2

∫
R

f∨ (a−1ξ
)
κ̂(ξ)e−ibξ/a dξ.

The integral is well-defined, because f∨ is locally integrable away from the origin, and κ̂ is supported away 
from the origin. Hence,

〈f, κa,b〉 = aγ−
1
2

∫
R

f∨(ξ)κ̂(ξ)e−ibξ/a dξ.

Setting u = 1
a , we obtain

〈
f, κ1/u,b

〉
= u−γ+ 1

2

∫
R

f∨(ξ)κ̂(ξ)e−ibξu dξ = u−γ+ 1
2 F (f∨ κ̂)(bu). (17)
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In a neighborhood of the origin, the function ξ �→ κ̂(ξ) f∨(ξ) is in C∞ and vanishes there. Arguments 
analogous to those in the proof of Theorem 3.2 imply that the function u �→ F (f∨ κ̂)(bu) is of rapid decay 
and has infinitely many vanishing moments. Finally, by Lemma 3.3, we obtain that F (f∨ κ̂)(bu) has an 
unbounded sequence of zeros. Hence,

sgn
〈
f, κ1/u,b

〉
= sgn

(
u−γ+ 1

2 F (f∨ κ̂)(bu)
)

cannot converge for u → ∞ to a non-zero value. It follows that σf(b) = 0, which completes the proof. �
4. The signature at singular points

In this section we compute the signature at singular points of a signal, such as cusp and jumps. To this 
end, we will need the following lemma.

Lemma 4.1. Let g be locally integrable of polynomial growth and continuous at 0 with g(0) = 0. Let h be a 
homogeneous function of degree γ ≥ 0. Then we have for each ψ ∈ S (R) that

1
aγ+1

∫
R

∣∣∣∣h(t)g(t)ψ
(
t

a

)∣∣∣∣→ 0 as a → 0+.

Proof. Let ε > 0 be arbitrary. Since g(0) = 0 and since g is continuous around the origin, we can find δ > 0
such that |g(x)| ≤ ε for all |x| ≤ δ. Thus, around the origin we get the estimate

1
aγ+1

∣∣∣∣∣∣
δ∫

−δ

g(x)h(x)ψ
(x
a

)
dx

∣∣∣∣∣∣ ≤ ε

aγ+1

δ∫
−δ

∣∣∣h(x)ψ
(x
a

)∣∣∣ dx

= ε

δ
a∫

− δ
a

|h(y)ψ (y)| dy ≤ ε‖hψ‖L1 .

Here we used the homogeneity of h and the integrability of hψ. Since g is of polynomial growth and ψ is of 
rapid decay, there exist C, M > 0 and N > γ such that

|h(x)g(x)| ≤ C|x|N and |ψ(x)| ≤ C|x|−N−2,

for all |x| ≥ M . Hence, there is a0 > 0 such that

1
aγ+1

∣∣∣∣∣∣∣
∫

|x|>M

h(x)g(x)ψ
(x
a

)
dx

∣∣∣∣∣∣∣ ≤
C2

aγ+1

∣∣∣∣∣∣∣
∫

|x|>M

|x|N |a|N+2

|x|N+2 dx

∣∣∣∣∣∣∣ ≤ ε,

for all 0 < a < a0. By the rapid decay property of ψ, there exists 0 < a1 ≤ a0, such that

1
aγ+1 sup

[δ,M ]

∣∣∣ψ (x
a

)∣∣∣ = 1
aγ+1 sup

[aδ,aM ]
|ψ (x)| ≤ ε,

for all 0 < a ≤ a1. As g is locally integrable, it follows that
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1
aγ+1

∣∣∣∣∣∣∣
∫

δ<|x|<M

h(x)g(x)ψ
(x
a

)
dx

∣∣∣∣∣∣∣ ≤
1

aγ+1

M∫
−M

|h(x)g(x)| dx · sup
[δ,M ]

∣∣∣ψ (x
a

)∣∣∣ ≤ C ′ε,

with a constant C ′ that is independent of a. Combining all three estimates, we have found that for every 
ε > 0 there exists an a1 > 0 such that

1
aγ+1

∣∣∣∣∣∣
∫
R

h(x)g(x)ψ
(x
a

)
dx

∣∣∣∣∣∣ < (‖hψ‖L1 + 1 + C ′) ε, for all a < a1.

This proves the assertion. �
4.1. Jump singularities

We compute the signature at jump discontinuities. We say that a function f has a jump (or step) 
discontinuity at b if the left-hand and the right-hand limits f(b+) and f(b−) exist but are not equal. We 
also let U be the unit step (or Heaviside) function given by

U(x) =
{

1, if x ≥ 0,
0, else.

We obtain the following result for jump discontinuities.

Theorem 4.2. Let f be a real-valued, locally integrable function of polynomial growth and let b ∈ R. If there 
exists a neighborhood V of b such that f is continuous on V \ {b} and has a jump discontinuity at b, then

σf(b) =
{

+i, if f(b−) < f(b+),
−i, if f(b−) > f(b+).

(18)

Proof. By the commutation property with translations (6), we may assume that b = 0. Further, as sub-
tracting a constant does not alter the signature, we may assume that f(0+)+f(0−)

2 = 0. By (8) we have 
σ(−f) = −σf , hence it is sufficient to prove the results for the case Θ = f(0+) − f(0−) > 0. Throughout 
this proof we write fe for the even part and fo for the odd part of f , that is,

fe(x) = f(x) + f(−x)
2 and fo(x) = f(x) − f(−x)

2 .

Let κ be a signature wavelet. Since κ̂ is real-valued, Reκa,0 is even and Imκa,0 is odd. Thus we have

Re 〈f, κa,0〉 = 〈fe + fo,Reκa,0〉 = 〈fe,Reκa,0〉

and

Im 〈f, κa,0〉 = 〈fe + fo, Im κa,0〉 = 〈fo, Im κa,0〉 .

We observe that

Cκ =
∞∫

Im κ(x) dx = Im
∫

U(x)κ(x) dx = Im
∫

− 1
iω

κ̂(ω) dω =
∫ 1

ω
κ̂(ω) dω > 0.
0 R R R



210 M. Storath et al. / Appl. Comput. Harmon. Anal. 42 (2017) 199–223
By Lemma 4.1 we get

1√
a
〈fe,Reκa,0〉 = 1

a

∫
R

fe(x) Reκ
(x
a

)
dx → 0, as a → 0. (19)

We next show that

1√
a
〈fo, Im κa,0〉 = 1

a

∫
R

fo(x) Im κ
(x
a

)
dx → CκΘ, as a → 0, (20)

which is equivalent to

1
a

∣∣∣∣∣∣
∫
R

fo(x) Imκ
(x
a

)
dx− CκΘ

∣∣∣∣∣∣→ 0, as a → 0.

By the antisymmetry of Im κ, this can be rewritten as

1
a

∣∣∣∣∣∣
∫
R

fo(x) Imκ
(x
a

)
dx− Θ

∞∫
0

Im κ(x) dx

∣∣∣∣∣∣ = 1
a

∣∣∣∣∣∣
∫
R

(
fo(x) − sgn(x)Θ

2

)
Im κ

(x
a

)
dx

∣∣∣∣∣∣ .
Since fo(x) − sgn(x)Θ

2 is continuous around the origin, (20) follows from Lemma 4.1.
From (19) and (20), it follows that

Re 〈f, κa,0〉 ∈ o (Im 〈f, κa,0〉) , for a → 0.

Thus we get by Proposition 2.3 that

lim
a→0

sgn 〈f, κa,0〉 = i,

which completes the proof. �
Now are able to compute the signature of the unit step U . Using Theorem 3.2 for b �= 0 and Proposition 4.2

for b = 0 we get

σU(b) =
{
i, if b = 0,
0, else.

(21)

The same arguments can be applied to the sign function x �→ sgn x.

4.2. Cusp singularities

We say that f has a symmetric cusp singularity of order γ ∈ (0, 1] at x0 ∈ R if

f(x) = ±|x− x0|γ (1 + g(x)), (22)

where g is a locally integrable function with limx→x0 g(x) = 0. We say that the symmetric cusp is downwards 
if the positive sign holds in (22) and upwards if the negative sign holds in (22). Similarly, we say that f has 
a right hand cusp of order γ ∈ (0, 1] at x0 if
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f(x) = (x− x0)γ+ (1 + g(x)) (23)

where

xγ
+ =
{
xγ for x ≥ 0,
0 else.

Likewise we call the reversed version a left hand cusp.

Theorem 4.3. Let f be a real-valued, locally integrable function of polynomial growth. If f has a symmetric 
cusp singularity of order γ ∈ (0, 1] at b ∈ R then

σf(b) =
{

+1, for an upward cusp,
−1, for a downward cusp.

(24)

For a one-sided cusp we have

σf(b) =
{
e+i(γ+1)π/2, for a right hand cusp,
e−i(γ+1)π/2, for a left hand cusp.

(25)

Proof. Since signature commutes with translations, we may assume that b = 0.
By (22) and (23), f is of the form

f(x) = h(x)(1 + g(x))

with h = ±|x|γ and h(x) = ±(x)γ+, respectively. Let us first assume that f is a pure cusp which means that 
g = 0. If γ = 1 then, according to [12, eq. 2.3(19)], we obtain

〈| · |γ , κa,0〉 =
〈
|̂ · |γ , (κa,0)∨

〉
= 2(−1)

γ−1
2 +1γ!

∫
R

(κa,0)∨(ξ)
|ξ|γ+1 dξ. (26)

For 0 < γ < 1, it follows from [12, eq. 2.3(12)] that

〈| · |γ , κa,0〉 =
〈
|̂ · |γ , (κa,0)∨

〉
= − sin

(πγ
2

)
Γ(γ + 1)

∫
R

(κa,0)∨(ξ)
|ξ|γ+1 dξ. (27)

In both cases, it follows from a change of variables that there is Cγ > 0 such that

〈| · |γ , κa,0〉 = −Cγa
γ+1 < 0. (28)

It follows that

σ(| · |γ)(0) = −1

and by (8) that

σ(−| · |γ)(0) = 1.

Similarly, we have for the right hand cusp that (see, e.g. [43, eq. (1.5)])
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Fig. 2. Left: Right hand cusps of power-type of the form f(x) = xγ
+ for different values of γ. Right: Corresponding signatures at 

the origin σf(0) as orientations in the complex plane. The signature evolves from purely imaginary (unit step, γ = 0) to purely 
real (ramp function, γ = 1).

〈
(·)γ+, κa,0

〉
=
〈
(̂·)γ+, (κa,0)∨

〉
= Γ(γ + 1)

∫
R

(κa,0)∨(ξ)
(iξ)γ+1 dξ

= ei(γ+1)π/2Γ(γ + 1)
0∫

−∞

(κa,0)∨(ξ)
|ξ|γ+1 dξ

= ei(γ+1)π/2C ′
γa

γ+1 (29)

with C ′
γ > 0. Hence, we obtain

σ((·)γ+)(0) = ei(γ+1)π/2.

For the reversed version, i.e. the left hand cusp, we get by Hermitian symmetry

σ((−·)γ+)(0) = e−i(γ+1)π/2.

Now let us turn to the case where g is not identically 0. We notice that in all cases h is a homogeneous 
function of degree γ. By Lemma 4.1 we get that

1
aγ+1 〈h g, κa,0〉 → 0.

From (28) and (29), it follows that 〈h g, κa,0〉 ∈ o(〈g, κa,0〉). Since σ(h)(0) �= 0, we can apply Lemma 2.3 to 
get

σ(f)(0) = σ(h + gh) = σ(h)(0),

which completes the proof. �
A particular example of the above theorem is a pure downwards cusp of power-type f(x) = | · |γ . Using 

Theorem 3.2 for b �= 0 and Theorem 4.3 for b = 0 we get

σf(b) =
{
−1, if b = 0,
0, else.

(30)

Fig. 2 shows the signature of right hand cusps for different values of γ.
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5. The signature under fractional Hilbert transforms

Next, we study the behavior of the signature under fractional Hilbert transforms. The fractional Hilbert 
transform was first introduced in [31]. We follow the definition given in [32]. For α ∈ R, the fractional 
Hilbert transform Hα is defined on S ′(R)/P by

Ĥαf = e−iαπ
2 sgn(·) f̂ . (31)

For α = 1 we obtain the classical Hilbert transform H = H1. We next show that the fractional Hilbert 
transform Hα acts on the signature as a multiplication by eiα

π
2 , i.e., as a rotation in the complex plane.

Theorem 5.1. Let f ∈ S ′(R)/P and b ∈ R. Then

σ (Hαf) (b) = eiα
π
2 σf(b). (32)

Proof. By the translation invariance (6), it is sufficient to prove the result for b = 0. Let a > 0 and let κ be 
a signature wavelet. We have

〈Hαf, κa,0〉 =
〈
e−iαπ

2 sgn(ω)f̂ , (κa,0)∨
〉

=
∫
R

e−iαπ
2 sgn(ω)f̂(ω)(κa,0)∨(ω) dω.

Since suppκ∨
a,0 ⊂ (−∞, 0], this reduces to

〈Hαf, κa,0〉 =
0∫

−∞

e−iαπ
2 sgn(ω)f̂(ω)(κa,0)∨(ω) dω

= eiα
π
2

0∫
−∞

f̂(ω)(κa,0)∨(ω) dω = eiα
π
2

〈
f̂ , (κa,0)∨

〉
= eiα

π
2 〈f, κa,0〉 .

Thus, we obtain

σ (Hαf) (0) = lim
a→0

sgn 〈Hαf, κa,0〉 = eiα
π
2 lim

a→0
sgn 〈f, κa,0〉 = eiα

π
2 σf(0),

which proves the claim. �
An interesting case of Theorem 5.1 is the following example. We consider the sign function f(x) = sgn(x). 

Its (ordinary) Hilbert transform is given by Hf(x) = 2 log |x| in the distributional sense, cf. [35, p. 80]. 
Theorem 5.1 and (21) imply that

σ(log | · |)(b) = σ(Hf)(b) = i σ(f)(b) =
{
i2 = −1, if b = 0,
0, else.

Thus the logarithm has the same signature as the cusp of power type (30).
An illustration of the action of the Hilbert transform on the signature is given in Fig. 3.
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Fig. 3. Left: Fractional Hilbert transforms of the sign function Hα sgn(·) for different values of α. Right: Corresponding signature 
at the origin σf(0) as orientations in the complex plane. The signature evolves from purely imaginary (sign function, α = 0) to 
purely real (logarithm, α = 1).

6. The signature of random signals

In this section, we show that certain random signals do not contain any salient points in the sense of 
signature.

6.1. Gaussian white noise and fractional Brownian motion

We briefly recall the definition of Gaussian white noise and fractional Brownian motion. For a detailed 
description, we refer to the textbooks [16,44]. A Gaussian white noise with variance σ2 is determined by 
the characteristic functional P̃ , defined for φ ∈ S (R) by

P̃ (φ) = e−
σ2
2 ‖φ‖2

2 .

By the Minlos–Bochner theorem, there is a unique probability measure P on S ′(R) such that for all 
φ ∈ S (R) ∫

S ′(R)

ei〈φ,f〉 dP (f) = P̃ (φ).

A random variable w that follows the probability law P is called Gaussian white noise with variance σ2. In 
order to define the fractional Brownian motion, let Dγ be the fractional differential operator of order γ ∈ R

defined for f ∈ S ′(R)/P by

D̂γf(ω) = (iω)γ f̂(ω).

By definition, a fractional Brownian motion Bγ of order γ is a solution of the stochastic differential equation

DγBγ = w, (33)

where w is a Gaussian white noise. With this notation B0 = w and B−1 is the classical Brownian motion.
We next show that Gaussian white noise and fractional Brownian motion have a vanishing signature. In 

order to prove this result we need the following two elementary properties of a generalized Gaussian noise 
[16, Chapter 3.4]: For each Schwartz function φ �= 0 we have that 〈w, φ〉 is a Gaussian random variable 
with zero mean and with variance σ2‖φ‖2

2. Further, if φ and ψ are orthogonal with respect to the L2 inner 
product then the random variables 〈w, φ〉 and 〈w,ψ〉 are independent.
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Theorem 6.1. Let w be a Gaussian white noise with variance σ2. For all b ∈ R we have

σ(w)(b) = 0 with probability 1.

More generally, let Bγ be a fractional Brownian motion of order γ ≥ 0. For all b ∈ R we have

σ(Bγ)(b) = 0 with probability 1.

Proof. Let κ be a signature wavelet. By the commutation with translation property it is sufficient to prove 
the assertion for b = 0. We first treat the case γ = 0 where Bγ = w. Since w is a Gaussian white noise, 
we have that both the real part and the imaginary part of 〈w, κa,0〉 are Gaussian distributed with zero 
mean and the variance σ2‖ Reκa,0‖2

2 = σ2‖HReκa,0‖2
2 = σ2‖ Im κa,0‖2

2. The real and the imaginary part 
are independent due to the orthogonality of the real part and the imaginary part of κ, that is,

〈Reκa,0, Im κa,0〉 = 〈Reκa,0,HReκa,0〉 = 0.

Hence, sgn 〈w, κa,0〉 follows a uniform distribution on the complex unit circle. Let (aj)j∈N be a decreasing 
zero sequence such that κ̂aj ,0 and κ̂ak,0 have disjoint supports for all j �= k. By Parseval’s relation it follows 
that κaj ,0 and κak,0 are orthogonal with respect to the L2 inner product. It follows that sgn

〈
w, κaj ,0

〉
and 

sgn 〈w, κak,0〉 are independent. Now let I be an arc on the complex unit circle of length 0 < ε < π. Since 〈
w, κaj ,0

〉
is uniformly distributed on the unit circle, we get for all j ∈ N

P (sgn
〈
w, κaj ,0

〉
∈ I) ≤ 1

2 .

From the independence for k �= j it follows for all index sets J ⊂ N with |J | = N that

P ({sgn
〈
w, κaj ,0

〉
∈ I for all j ∈ J}) ≤ 2−N → 0.

Hence, the probability that sgn
〈
w, κaj ,0

〉
converges for j → ∞ is equal to zero. This shows the assertion 

for γ = 0.
For γ �= 0, we get by (33) that

sgn 〈HγBγ , κa,0〉 = sgn
〈
HγD−γw, κa,0

〉
= sgn

〈
(−Δ)−γ/2w, κa,0

〉
= sgn

〈
w, (−Δ)−γ/2(κa,0)

〉
= sgn

〈
w, ((−Δ)−γ/2κ)a,0

〉
.

Since (−Δ)−γ/2κ is a signature wavelet, we can use the same arguments as before to conclude that 
σ(HγBγ)(0) = 0. Using Theorem 5.1 we get

σBγ(0) = e−iγ π
2 σ(HγBγ)(0) = 0,

which completes the proof. �
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6.2. Randomization of wavelet coefficients

Let {ψjk}j,k∈Z be an orthonormal wavelet basis of L2(R), where ψ := ψ00 has compactly supported 
Fourier transform. Here j stands for the dyadic level and k for the translation parameter. For f ∈ L2(R), 
we have the following decomposition

f =
∑
j∈Z

∑
k∈Z

〈f, ψjk〉ψjk =
∑
j∈Z

∑
k∈Z

fjkψjk,

where convergence is in L2-norm. We define an operator Aε : L2(R) → L2(R) of random perturbations of 
the wavelet signs by

Aεf :=
∑
j∈Z

∑
k∈Z

εjkfjkψjk, (34)

where {εjk} is a Rademacher sequence, i.e. a sequence of independently and identically distributed random 
variables taking the values ±1 with probability 12 . Regarding the use of Rademacher sequences in the context 
of random Fourier series and random matrices, see [24] and [38]. More recently, Jaffard [22] considered the 
use of Rademacher sequences for random perturbations of wavelet series. Our next theorem shows that the 
signature of Aεf vanishes for almost every realization of the Rademacher sequence.

Theorem 6.2. Let f ∈ L2(R), b ∈ R, and Aε an operator of random sign perturbations as defined in (34). 
Then

σ(Aεf)(b) = 0, for almost every ε.

Proof. We start by observing that

sgn 〈Aεf, κa,b〉 = sgn

⎛⎝∑
l,m

εl,m 〈f, ψl,m〉 〈ψlm, κa,b〉

⎞⎠ , for any a > 0. (35)

We recursively construct a decreasing sequence aj such that limj→∞ aj = 0 as follows. Let us denote by Sj

the set of indices such that 
〈
ψlm, κaj ,b

〉
does not vanish, i.e.

Sj := {(l,m) ∈ Z2 :
〈
ψlm, κaj ,b

〉
�= 0}.

As the Fourier transform of ψlm is compactly supported and because of the structure of the compact supports 
of the Fourier transforms of the functions κaj,b, we can choose the sequence {aj}j such that Sj ∩Si = ∅ for 
all j �= i. We consider the corresponding sequence of random variables

(Aεf)j :=
∑
l,m

εl,m 〈f, ψlm〉
〈
ψlm, κaj ,b

〉
.

The pairwise disjointness of the Sj implies that (Aεf)j,b consists of independent random variables. Now 
since {εlm} is a Rademacher sequence, we have that

sgn(A−εf)j = − sgn(Aεf)j .

Let I1 be the arc of length π centered at 1, i.e., I1 = {z ∈ C : |z| = 1, Re z ≥ 0}. For all j > 0, we have that
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P (sgn(Aεf)j ∈ I1) = P (sgn(Aεf)j ∈ −I1) = 1
2 (36)

where P denotes the probability measure associated with the Rademacher sequence {εlm}. It follows from 
(36) and from the independence of for all index sets J ⊂ N with |J | = N that

P ({sgn(Aεf)j ∈ I1 for all j ∈ J}) ≤ 2−N → 0.

An analogous assertion is true for the arc I2 centered around i given by I2 = {z ∈ C : |z| = 1, Im z ≥ 0}. 
Hence, we have

σ(Aεf)(b) = 0, with probability 1. �
Let us illustrate the above result by considering the characteristic function on [0, 1]: f = 1[0,1]. The signal 

f has jump discontinuities at 0 and 1, but the shape of the randomly perturbed signal Aεf does not have 
much in common with the original jump shape of f . Jaffard has shown [22] that Aεf is unbounded with 
probability 1. However, since the amplitude of the wavelet coefficients is not altered, 〈f, ψjk〉 = 〈Aεf, ψjk〉, it 
is difficult to distinguish between f and Aεf using a local signal analysis tool that is based only on the moduli 
of the wavelet coefficients. Signature, on the other hand, takes into account the random perturbations. The 
signature of the original function f is non-zero at 0 and 1, but identically zero for the perturbed function 
Aεf .

7. Relations to the singular support and a geometric interpretation

In the examples that we have considered so far, the points of non-zero signature are a subset of the 
classical singular support. This gives rise to the question whether there is a relation between the classical 
singular support and the support of the signature suppσf . Recall that a point x0 is not in the singular 
support of a distribution f if there is a compactly supported C∞ function φ with φ(x0) �= 0 such that 
φf ∈ C∞.

On the one hand, from the example of the Weierstraß function in (5) we see that in general

sing supp f �⊆ suppσf. (37)

On the other hand, let f = e−γx2 be a Gaussian function with γ > 0, and let κ be any signature wavelet. 
The singular support of f is empty because f is smooth. Since

〈f, κa,0〉 =
〈
f̂ , (κa,0)∨

〉
=

√
π

∫
R

e−
ω2
4γ (κa,0)∨(ω) dω > 0, for all a > 0,

the signature is equal to 1 at b = 0. Thus, in general,

suppσf �⊆ sing supp f. (38)

The example of the Gaussian is particularly interesting: even though the function can be approximated 
arbitrarily close by polynomials around the origin, its signature at the origin does not vanish. Moreover, by 
Lemma 2.3 and (7), we can subtract any finite number of Taylor series terms and still obtain a non-zero 
signature.

Now, let us compare the signature to the local Sobolev regularity. Recall that the local Sobolev regularity 
index sf (b) of f at b is defined by

sf (b) = sup
{
s ∈ R : ∃ ϕ ∈ D(R), ϕ(b) �= 0, so that ϕf ∈ W s,2(R)

}
. (39)
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Table 1
Signatures of frequently occurring feature types. The signature is imaginary at the antisym-
metric and real at the symmetric features.

Signal feature Local symmetry Signature

Step to right Antisymmetric +i

Step to left Antisymmetric −i

Cusp upwards Symmetric +1
Cusp downwards Symmetric −1

(See, for example, [19, Chapter 18.1].) The local Sobolev regularity index is often (implicitly) used in signal 
analysis since it is characterized by the decay of the moduli of wavelet coefficients, cf. [34]. Whereas the local 
Sobolev regularity index is by definition a measure for the local order of differentiability, the interpretation of 
signature is not so obvious. First notice a fundamental difference between Sobolev regularity and signature: 
the fractional Hilbert transform leaves the local Sobolev regularity index sf invariant, that is,

sHαf (b) = sf (b), (40)

while this is not the case for the signature (see Theorem 5.1). We argue that signature can be considered 
as an indicator of local symmetry at a singular point. To this end, let us recall that the signature is 
imaginary at step discontinuities and real at symmetric cusps of power type. This is a first indication that 
imaginary signatures correspond to locally antisymmetric features and that real signatures indicate locally 
symmetric features; see Table 1. A more rigorous argument can be derived from the change of the signature 
under the Hilbert transform. The ordinary Hilbert transform converts the symmetric part of a signal to an 
antisymmetric function, and vice-versa. Theorem 5.1 states that the application of the Hilbert transform 
to a signal induces a multiplication of its signature by e

1
2 iπ = i. Thus, the change of symmetry is directly 

reflected in the rotation of the signature by π2 in the complex plane. We may explicitly observe this effect 
for the sign function x �→ sgn x and its Hilbert transform (in a weak sense), the logarithm x �→ 2 log |x|. 
The antisymmetric sign function has a signature of i at the origin whereas the signature of the logarithm 
equals i · i = −1.

8. Discretization and numerical experiments

In practice, only a finite number of wavelet scales {aj}Nj=1 is available, so we have to estimate the limiting 
behavior from a finite number of samples

cj,b =
〈
f, κaj ,b

〉
, j = 1, . . . , N.

A standard method for estimating local Sobolev regularity is to determine the decay behavior of the wavelet 
coefficients by linear regression on the magnitudes of the available coefficients. In our case it seems reasonable 
to measure the variation around a mean direction. To this end we regard the signs of the wavelet coefficients 
as directions within the complex plane and then utilize the framework of directional statistics. Directional 
statistics describes the statistical properties of a sample set of directions; see e.g. [9] for an introduction to 
this topic and [7] for applications in frame theory.

An elementary descriptor of the data set {sgn cj,b}Nj=1 is the mean value of the sample set, given by

r(b) = 1
N

N∑
sgn cj,b = 1

N

∑ cj,b
|cj,b|

. (41)

j=1 cj,b 
=0
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Fig. 4. Illustration of the moments of the directional statistics of the wavelet signs sgn cj,b for a fixed location b and five scale 
samples aj , where j = 1, . . . , 5. The vectors rj = 1

5 sgn cj,b are composed head to tail in the complex plane.

The value r(b) is called mean resultant vector. The moments of the data set, the directional mean μ(b) ∈ C

and the directional variance ρ(b) ∈ [0, 1], can be directly derived from the mean resultant vector. The 
directional mean is defined by

μ(b) = sgn r(b)

and the directional variance by

ρ(b) = 1 − |r(b)| .

These quantities are illustrated in Fig. 4. We consider the signature to be non-zero if their directional 
variance is low; more precisely, if the directional variance ρ(b) falls below some threshold τ ∈ [0, 1]. Hence, 
we propose a discrete estimate σf(b) of the signature of the form

σf(b) =
{

sgn r(b), if |r(b)| ≥ τ,

0, else.
(42)

We obtain the following elementary consistency result for our discretization.

Proposition 8.1. Let f be a tempered distribution, κ be a signature wavelet, and {aj}j∈N a sequence such 
that aj → 0. If σf(b) �= 0 for some b ∈ R then

lim
N→∞

1
N

N∑
j=1

sgn
〈
f, κaj ,b

〉
= σf(b). (43)

Proof. Let κ be a signature wavelet. As σf(b) is non-zero, the sequence {sgn
〈
f, κaj ,b

〉
}j∈N is convergent. 

We observe that the limit in (43) is the Cesàro sum of this sequence. The claim follows from the fact that, 
for a convergent sequence, its Cesàro sequence converges to the same limit, cf. [14, Chapter 5.7]. �

Next, we derive a value for the threshold τ . Assume that the signs of the wavelet coefficients {sgn cj,b}Nj=1
at some location b are independent and follow a uniform distribution on the circle. Then the signature at 
b should be equal to zero with high probability. Therefore, we choose τ such that the probability that the 
resultant vector exceeds the threshold, P (|r(b)| ≥ τ), is smaller than some significance level α, say α = 0.05. 
To derive a lower bound on τ , recall that a complex number x + iy of modulus one can be represented as 
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Fig. 5. The discrete signature of a jump and a cusp. The absolute value of the resultant vector rb is close to one at the singularities 
and much lower at the other points (second column). In the third column, the discrete signature according to (42) is depicted as a 
phase angle. The signature is close to the angles ±π

2 , for the step and around ±π for the cusp. The extra points at the boundaries 
are due to the periodization of the signal.

a (2 × 2) matrix of the form ( x −y
y x ) whose spectral norm is equal to one. This allows to apply the matrix 

Bernstein inequality (see Theorem 1.6 of [41]) which yields

P (|r(b)| ≥ τ) = P

⎛⎝∣∣∣∣∣
N∑
j=1

sgn cj,b

∣∣∣∣∣ ≥ Nτ

⎞⎠ ≤ 4 exp
(
−

1
2 (Nτ)2

N + Nτ
3

)
= 4 exp

(
−

1
2Nτ2

1 + τ
3

)
= α.

Solving for τ yields

τ = 1
N

(
−1

3 log
(α

4

)
+
√

1
9 log2

(α
4

)
− 2N log

(α
4

))
. (44)

For all experiments, we used the Meyer-type signature wavelet (2). In order to get a sufficient amount of 
samples we use five octaves and five scales per octave, which corresponds to a scale sampling of the form 
aj = 2− j

5 , with j = 0, . . . , 24. We take integer samples of f and we sample b on the same grid for each 
scale. In the experiments, it can be often observed that two adjacent points exceed the threshold. Since they 
typically correspond to the same feature, we set r(b) to zero if |r(b)| is not the maximum of the three values 
|r(b − 1)|, |r(b)|, and |r(b + 1)|. This technique is called non-maximum suppression; it is frequently used in 
feature detection pipelines to get sharply localized feature points [3]. For the significance level α = 0.05 and 
N = 25 we get from (44) the threshold τ ≈ 0.65.

In Fig. 5, we see the discrete signatures of a pure jump and a pure cusp singularity. We observe that the 
mean resultant vector exceeds the threshold at the singular points and the orientation in the complex plane 
is given by i and −1, respectively. This is in agreement with the theoretical results for pure cusps and pure 
steps as given in Table 1. We can observe similar results for a more complicated signal Fig. 6.

We eventually compare our discretization to phase congruency [27]. The quantity of interest in phase 
congruency is the modulus of

p(b) =
∑N

j=1 cj,b∑N
j=1 |cj,b| + ε

(45)

with some ε > 0. In contrast to the discretization of the signature (42), the normalization is applied after 
summation of the coefficients. This comes with the following issue, termed frequency spread in [27]. If one 
coefficient is much larger than the others, then |p(b)| is large, even if the wavelet coefficients cj,b point 
into different directions. This effect is illustrated in Fig. 6. In [27], this effect is attenuated by introducing
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Fig. 6. The discrete signature of a sample signal (top) taken from Wavelab [5]. We observe that the absolute value of the mean 
|r(b)| is large at the feature points and much lower at the other points (second row). The third plot depicts the discrete signature 
in phase angle representation. We see that the signature is near the angles ±π

2 at the step-like points, and around π and 0 at 
cusp-like points. Phase congruency is shown for comparison (fourth row).

a sigmoidal weight function. However, this comes with the cost of two extra empirical parameters. The 
discretization of the signature (42) does not encounter this problem because the normalization is applied 
before summation so that every coefficient is weighted equally.

9. Summary and outlook

We have proposed a new tool for signal analysis that is based on complex wavelet signs. Signature 
is capable of delineating and classifying isolated salient feature points of a signal. We proved that the 
signature is imaginary at a jump discontinuity, whereas it is real at a symmetric cusp of power type. 
Furthermore, it rotates in the complex plane under fractional Hilbert transforms. In addition, we showed 
that singularities regarded in the classical sense need not coincide with singularities described in terms of 
signature. We have seen that signature classifies certain random signals as non-salient. Finally, we have 
proposed a discretization based on directional statistics which is consistent with the theoretical concepts 
developed in this paper.

Although the signature depends in general on the employed wavelet almost all assertions made in this 
paper are independent of this particular choice. It is an open question under which conditions signature is 
independent of the wavelet. We conjecture that signature is invariant under fractional Laplacians. A further 
direction of research is the multidimensional extension of signature.
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