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Fast Segmentation From Blurred Data
in 3D Fluorescence Microscopy

Martin Storath, Dennis Rickert, Michael Unser, Fellow, IEEE, and Andreas Weinmann

Abstract— We develop a fast algorithm for segmenting
3D images from linear measurements based on the Potts model
(or piecewise constant Mumford–Shah model). To that end, we
first derive suitable space discretizations of the 3D Potts model,
which are capable of dealing with 3D images defined on non-
cubic grids. Our discretization allows us to utilize a specific
splitting approach, which results in decoupled subproblems of
moderate size. The crucial point in the 3D setup is that the
number of independent subproblems is so large that we can
reasonably exploit the parallel processing capabilities of the
graphics processing units (GPUs). Our GPU implementation is up
to 18 times faster than the sequential CPU version. This allows to
process even large volumes in acceptable runtimes. As a further
contribution, we extend the algorithm in order to deal with
non-negativity constraints. We demonstrate the efficiency of our
method for combined image deconvolution and segmentation on
simulated data and on real 3D wide field fluorescence microscopy
data.

Index Terms— Image segmentation, 3D images, Potts model,
piecewise constant Mumford–Shah model, parallelization, GPU,
non-negativity constraints.

I. INTRODUCTION

SEGMENTATION is an important component of many
image processing pipelines. For instance, a segmentation

of the image can be used to extract objects of interest such
as, e.g., nuclei of cells in microscopic images. Furthermore,
it can serve for dimensionality reduction by aggregating
related pixels into larger regions (“superpixels”). In many
imaging modalities however, the image of interest cannot be
recorded directly, but it is reconstructed from indirect linear
measurements given by the device. The relation between the
imaged object and the data is given by some imaging operator;
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for example, the data acquisition in computed tomography
is described by the Radon transform, and the operators in
microscopy are often assumed to be shift-invariant which
results in operators of convolution type.

Segmentation of indirectly measured images is typically
performed in two steps: first the image is reconstructed from
the measured data by (stabilized) inversion of the imaging
operator; then, the resulting image is partitioned or segmented.
The advantage of this two stage procedure is that there is a
large number of methods available for the separate steps. For
instance in 3D fluorescent microscopy, the deblurring stage
can be accomplished by the Tikhonov-Miller method, the
(regularized) Richardson-Lucy method [1]–[3], or wavelet
methods [4], and the segmentation stage by k-means, active
contours [5], or graph cuts [6], to mention only a few. On the
flipside, the results of such two stage approaches are subopti-
mal since the distortions of the reconstruction step propagate
to the segmentation step. In particular when data is poor, com-
bined approaches, i.e. joint reconstruction and segmentation,
exhibit better performance [7]–[12]. We here focus on a classi-
cal, yet challenging, variational segmentation approach called
the Potts model or the piecewise-constant Mumford-Shah
model [13]–[15]. For indirectly measured images, it is given by

u∗ = arg min
u

γ ‖∇u‖0 + ‖Au − f ‖2
2. (Pγ )

Here, A denotes the mathematical model for the imaging oper-
ator, and f denotes the measured data. The inverse Potts model
is an optimization problem of two concurring objectives. The
term ‖Au − f ‖2

2 ensures fidelity to the measured data whereas
the Potts prior ‖∇u‖0 enforces a small jump set (or disconti-
nuity set) of a minimizer. The relative weight of the two target
functionals is regulated by the parameter γ ; the higher γ, the
smaller the jump set of a solution. The value of the jump-
penalty ‖∇u‖0 can only be small if u is a piecewise constant
function. Thus, a solution u∗ can be regarded as reconstruction
from data f with a piecewise constant prior; see also
[7], [12], [15]. The desired segmentation is encoded in
the piecewise constant function u∗: the constant regions
of u∗ correspond to the segments, and the jump set of
u∗ corresponds to the segment boundaries. Moreover, the
function value of u∗ on a segment gives an estimate on the
mean intensity on that segment.

A. Prior and Related Work

The Potts model is named after R. Potts who considered a
related regularizer in his seminal work in statistical mechan-
ics [13]. The classical Potts model, i.e., (Pγ ) with A = id, was
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introduced to image processing by Geman and Geman [14]
in a statistical framework. From a calculus of varia-
tion point of view, the problem was first considered by
Mumford and Shah [15]; there it is also known as piecewise
constant Mumford-Shah model. In recent work, (Pγ ) is also
referred to as the �0 gradient model [16], [17]. The Potts
problem is – even for A = id – computationally challenging:
it is known to be NP hard in dimension greater than
one [18], [19]. Nevertheless, the Potts model is a very popular
model for image segmentation; see [14], [19]–[21] to mention
only some examples. For the case A = id, classical algorithms
are based on simulated annealing [14] and on approximation
by elliptic functionals [22]. A non-exhaustive selection of pop-
ular approaches for A = id are active contours [5], [23]–[25],
graph cuts [6], [19], convex relaxations [26]–[29], semi-global
matching [30], [31], iterative thresholding [16], [32], fused
coordinate descent [33], region fusion [17], and alternating
direction method of multipliers (ADMM) [34]. Although the
latter approach is computationally more demanding than other
recent approaches [16], [17], [33], it gives the best quality
in practice; see [17]. In [6] and [35], graph cuts are used
for partitioning 3D images with discretized label spaces.
3D active meshes are used in [36] for cell segmentation and
tracking in microscopic images. Since the Potts problem is
computationally rather expensive, parallelization for graphics
processing units (GPU) has recently received a lot of attention;
see for example [26], [29], [37].

The setup we focus on, the Potts problem with A �= id,
has been studied to a much lower extent. On the theoretical
side, the regularizing properties of the inverse Potts model
in the sense of inverse problems have been investigated in
[9] and [38]–[40]. We stress that the inverse Potts problem
is computationally even more demanding than the classical
Potts problem. For instance, the inverse Potts problem is NP
hard even in one dimension [41], [42]. Early algorithmic
approaches are based on Ambrosio-Tortorelli approximations
[7], [43]. Rondi and Santosa [7] use this approach in electrical
impedance tomography; Bar et al. [43] apply it for semi-blind
image deblurring. Fornasier and Ward [32] propose iterative
thresholding algorithms and present applications to inpainting
problems; see also [44], [45]. A related iterative thresholding
type algorithm has been proposed for deconvolution prob-
lems [46]. An iterative Potts minimization scheme has been
developed in [47]. Kim et al. [48] propose a level-set active
contour approach for deconvolution problems. Ramlau and
Ring [9] use a level-set approach for the joint reconstruction
and segmentation of x-ray tomographic images; related meth-
ods are applied to electron tomography [49] and SPECT [38].
Active contours are also used for deconvolving fluorescence
microscopy images in [50]. An ADMM strategy has been pro-
posed in [12]. We note that the existing algorithmic approaches
focus mostly on the 2D setup, which is mainly due to the high
computational costs.

B. Challenges in 3D and Contribution

Here, we focus on the inverse Potts problem for 3D images.
Besides the problems already encountered in 2D, there are

additional challenges in 3D: (i) In many imaging modalities,
the resolution in the x3-direction is typically much lower than
in the other directions. This has to be taken into account when
discretizing the Potts prior ‖∇u‖0. (ii) The main challenge for
3D data is the high computational effort due to two reasons:
the number of pixels/voxels is typically much larger in 3D vol-
umes than in planar images, and the 3D neighborhood system
is bigger than the 2D system (e.g., 8-connected neighborhood
in 2D vs. 26-connected neighborhood in 3D). Hence there
is need for efficient algorithms that are able to process even
large 3D images in reasonable time. In particular, algorithms
that can be parallelized well are important to obtain feasible
runtimes without loss of segmentation quality.

In this work, we propose an efficient algorithmic framework
for joint 3D-image reconstruction and multilabel segmentation
based on the Potts model. We show its applicability for
joint reconstruction and segmentation in 3D fluorescence
microscopy. In particular, we contribute by addressing the
challenges (i) and (ii) as follows. Regarding (i), we consider
the discretization of the Potts prior in 3D for non-cubic
regular grids reflecting the different resolutions w.r.t. different
directions. Our discretization is based on weighted directional
difference scheme which has been introduced in the two-
dimensional case by Chambolle [51] and which has been
refined in a previous work of Storath and Weinmann [34].
For non-cubic regular grids, we here propose a new
discretization that takes the different resolutions w.r.t. the
different directions into account. We here show the practical
benefits in numerical experiments on synthetic and real data.

Regarding (ii), we extend a splitting strategy which was
originally developed by the authors for 2D image partition-
ing [12]. It relies on the alternating directions method of
multipliers (ADMM) which leads to subproblems that can be
efficiently solved by dynamic programming. As mentioned
before, the ADMM has shown the largest potential with
respect to quality but is computationally demanding in 3D. The
crucial point of the proposed design is that the algorithm is
parallelizable in a way that it leads to a significant speedup on
the GPU. We demonstrate the computational advantage of the
subproblem parallelization by implementing a tailored parallel
GPU version of the algorithm which is, on a single GPU, up to
around 18 times faster than a sequential implementation. This
is important to be able to process larger volumes in reasonable
time.

Besides the specifics of the 3D setup, we further address
the following general issue: (iii) The gray-values (or color-
values) of a reconstructed image often correspond to physical
quantities that cannot take on negative values; for example
the intensities in fluorescence microscopy. To take this into
account, we impose a non-negativity constraint which leads to
the non-negative Potts model

arg min
u

γ ‖∇u‖0 + ‖Au − f ‖2
2, subject to u ≥ 0. (P+

γ )

For this model, we derive a new algorithm which is virtually
as efficient as the unconstrained version.

Finally, we stress that our method neither requires a priori
knowledge on the number of segments and labels nor on the
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gray-values of a solution. Further, the method does not require
any initial guess of the solution.

In our numerical experiments, we focus on 3D image
segmentation from blurred measurements. We first evaluate
the capabilities of our method on synthetic datasets with
ground truth. Then we apply it to real data of a wide field
fluorescence microscope. Using our parallel GPU implemen-
tation, we achieve a joint deconvolution and segmentation of
a 400 × 400 × 50 image in less than three minutes. We note
that the experiments are based on depth-invariant point spread
functions. More sophisticated models for 3D fluorescence
microscopy use depth-variant point spread functions which
can give more accurate restorations [52], [53]. Further, we
have restricted ourselves to imaging modalities which are
modeled by linear measurements, and in particular convolution
operators. We note that the present algorithm can be adapted to
nonlinear imaging operators, e.g. those appearing in electrical
impedance tomography [54]. The relevant condition is that
we can solve the corresponding Tikhonov-regularized problem
within reasonable time.

C. Organization of the Paper

In Section II, we derive a suitable discretization of the Potts
prior for 3D images defined on cubic and non-cubic regular
grids. In Section III, we present the proposed computational
approach to (P+

γ ), and we elaborate on the solution of
the arising subproblems. Section IV deals with numerical
experiments on synthetic data and on real data.

II. DISCRETIZATION OF THE POTTS

PRIOR FOR 3D IMAGES

As a first step, we derive a suitable discretization of the jump
penalty ‖∇u‖0. In the following, we assume that u is a vector-
valued N-dimensional image, i.e., u ∈ X = R

d1×d2...×dN ×C .
Here, C denotes the number of channels of the image; for
example, C = 3 for color images. We use a finite difference
discretization of the form

‖∇u‖0 =
S∑

s=1

ωs‖∇as u‖0. (1)

The vectors as ∈ Z
N \ {0} belong to a finite difference system

N with S ≥ N elements. For a ∈ Z
N , we let

‖∇au‖0 = |{i = (i1, . . . , iN ) : ui,: �= ui+a,:}|,
where we use the notation ui,: = (ui,1, . . . , ui,C ) ∈ R

C

to denote the data sitting in the voxel with coordinates i .
∇au can be seen as a finite difference approximation of the
directional derivative of u with respect to the direction a.
Optimized discretizations of this form were initiated for planar
images (N = 2) by Chambolle [51]. In the simplest case,
N consists of the coordinate unit vectors e1, . . . , eN and the
weights ω1, . . . , ωN are all equal to one. Unfortunately, this
simple discretization corresponds to measuring lengths in the
Manhattan metric which may lead to undesired block building
in the results; see [34], [51].

A. Near-Isotropic Discretization for 3D Images
Defined on Cubic Grids

To get more isotropic discretizations, we utilize larger finite
difference systems. Such a system can be chosen rather arbi-
trarily in principle; the only hard constraint is that the system
spans R

N . In practice however, it is reasonable to start with the
coordinate unit vectors e1, . . . , eN and to successively enlarge
the neighborhood system by adding additional directions.
These extra directions can be planar diagonal finite difference
vectors such as e1 + e2, e1 + e3, . . . , and space diagonals such
as e1 + . . . + eN .

In the remainder, we will focus on 3D. There, 26-connected
neighborhood systems are frequently used. Identifying antipo-
dal points, this leads to the finite difference system

N = {(1, 0, 0), (0, 1, 0), (0, 0, 1),

(1, 1, 0), (1,−1, 0), (1, 0, 1),

(1, 0,−1), (0, 1, 1), (0, 1,−1),

(1, 1, 1), (1, 1,−1), (1,−1,−1), (−1, 1,−1)}. (2)

The system contains three coordinate directions, six planar
diagonal directions, and four volumetric diagonals, which
amounts to 13 orientations in total.

We now derive appropriate weights ω. To this end, we note
that a finite difference system gives rise to a metric on R

N

induced by the norm

‖x‖N =
S∑

s=1

ωs |〈x, as〉|, x ∈ R
N . (3)

A reasonable condition for the weights is that the length of
the vectors in the neighborhood system coincides with their
Euclidean length [12]; that is,

‖as‖N = ‖as‖2 for all s = 1, . . . , S. (4)

Plugging these S conditions into (3), we get the linear system
of equations

T ω = r, (5)

where T is an S × S matrix given by Tst = |〈as, at 〉| and the
righthand side by rs = ‖as‖2.

Proposition 1: The weights associated with the 26 con-
nected neighborhood system in (2) are given by

ω1 = . . . = ω3 = 2√
3

− 1,

ω4 = . . . = ω9 = 1

6

(
3
√

2 − 2
√

3
)

,

ω10 = . . . = ω13 = 1

6

(
3 − 3

√
2 + √

3
)

. (6)

A proof is provided in the appendix. Next, we quantify the
gain of this discretization. A reasonable measure of isotropy
is the ratio of the shortest to the longest vector (measured in
the Euclidean length) on the unit ball with respect to ‖ · ‖N ,
see [51]. The value 1 corresponds to perfect isotropy. For the
simple 6-connected neighborhood we obtain the unfavorable
ratio 1/

√
3 ≈ 0.58. For the proposed neighborhood system,

the ratio is approximately 0.91, which is much closer to the
desired value 1. This is illustrated in Figure 1.
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Fig. 1. Near-isotropic discretization on a cubic grid. Penalties induced by the
anisotropic discretization (left) and the quasi-isotropic discretization (right).
A point x on the surface encodes a direction x/|x| with its jump penalty |x|.
(The color code corresponds to |x|.) The diagonals are penalized to much by
the anisotropic discretization. The proposed discretization comes close to the
desired unit ball.

B. Discretization for 3D Images Defined on
Non-Cubic Regular Grids

The sampling rates of 3D images are often not equal with
respect to all directions. For example in microscopic images,
the sampling density in the x1 − x2-plane is typically much
higher than in the x3 direction. Then the above discretization
can lead to distortions of the length measure in x3 direction.
Therefore, we here design weights that account for images
with direction-dependent sampling densities. Let us assume
that the distance between two pixels in xn direction is given
by �n; i.e., the voxels are cubes with the side lengths
�1,�2,�3, and the size of these cubes do not change w.r.t.
location (homogeneity). Thus, the area δ1 of the interface
between two adjacent pixels in x1 direction is given by δ1 =
�2�3. Likewise, the interface areas of the other directions are
given by δ2 = �1�3 and δ3 = �1�2, respectively. In order to
account for the voxel size properly, a jump with respect to the
coordinate direction xn should get the cost δn . This motivates

to use ‖x‖δ =
√∑

n(δnxn)2 as jump penalty for the direction

x ∈ R
N . Considering the directions x = as for s = 1, . . . , S

leads to the new right hand side r ′ in (5) given by

r ′
s = ‖as‖δ, for s = 1, . . . , S. (7)

Note that the left hand side of (5) does not change because it
encodes the pixel neighborhood system.

When we solve the linear system (5) using the adapted
righthand side r ′ from (7), it can happen that the solution
ω has negative components. This happens for example for
the sampling steps � = (1, 1, 2), and its corresponding unit
jump penalty vector δ = (2, 2, 1). To avoid this undesired
effect, we impose a non-negativity constraint, and we solve
the linear system in a least squares sense; that is, we construct
the weights by

min
ω

‖T ω − r‖2
2, s.t. ω ≥ 0. (8)

This problem can be solved using for example an active set
method [55, Ch. 23]. If one of the weights gets equal to
zero, it does not contribute to the overall penalty. Therefore,
we remove all zero weights and the corresponding finite
difference vector. In the above example, � = (1, 1, 2), the

weight that corresponds to the orientation (0, 0, 1) is equal
to zero. Thus, we remove that from our system N and end
up with 12 finite difference vectors. In Figure 2 we visualize
the jump penalties that correspond to the weights computed
via (8). The practical advantage of incorporating the non-
equidistant sampling steps into the weight design is illustrated
in Figure 3 for synthetic data and in Figure 6 for real data.
At any rate the computational cost for solving the constrained
least squares problem (8) is negligible because its dimension is
low and because it has to be performed only once per imaging
setup.

III. A PARALLEL ALGORITHM FOR SEGMENTING

3D IMAGES FROM LINEAR MEASUREMENTS

Based on the above discretization (1) of the Potts prior,
we now develop our strategy for the Potts problem with
non-negativity constraints (P+

γ ). We first present a splitting
based on ADMM, and then provide the solvers for the arising
subproblems. We then discuss the computational complexity
and the potential for parallelization. The adaption to the
unconstrained version (Pγ ) is straightforward.

A. A Splitting Approach Based on ADMM

Our first step is to reformulate (P+
γ ) with the discretiza-

tion (1) as the constrained optimization problem

minimize
S∑

s=1

γωs‖∇as us‖0 + ‖Av − f ‖2
2,

subject to v − us = 0, for all 1 ≤ s ≤ S

us ≥ 0, for all 1 ≤ s ≤ S. (9)

Here, us denotes the split variable corresponding to the
direction as, where 1 ≤ s ≤ S. We form the augmented
Lagrangian Lμ of the target functional including the equality
constraints which reads as

Lμ({us}S
s=1, v, {λs }S

s=1)

=
S∑

s=1

γωs‖∇as us‖0 + 〈λs , v − us〉 + μ

2
‖v − us‖2

2

+ ‖Av − f ‖2
2. (10)

The non-negativity persists as constraints for us ≥ 0, for
all 1 ≤ s ≤ S. Here, the parameter μ > 0 control how
strongly the splitting variables are coupled. The λs ∈ X,
1 ≤ s ≤ S, take the role of Lagrange multipliers. This specific
splitting allows us to use ADMM for (10). (See, e.g., [56]
for an extensive overview on ADMM.) In each iteration we
minimize L sequentially with respect to u1, . . . , uS, and v
and subject to the inequality constraints. Then, we perform
gradient ascent steps in the Lagrange multipliers λ1, · · · , λS .

Then, we obtain by some algebraic manipulation (see
appendix) that

arg min
us≥0

Lμ = arg min
us≥0

2γωs

μ
‖∇as us‖0 + ‖us − ws‖2

2 (11)
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Fig. 2. Near-isotropic discretization on the non-cubic regular grid � = (1, 1, 2). A point x on the surface corresponds to the direction x/|x|, and its
penalty into that direction is |x|. The desired penalties define an ellipsoid (left) with the semi-axis lengths δ = (2, 2, 1). The anisotropic discretization (middle)
reproduces the Euclidean length in the coordinate directions but puts too much weight on the diagonals. The proposed weight design (right) yields a satisfactory
approximation to the desired Euclidean length.

Fig. 3. Practical effects of the non-equidistant weight design. The image
was blurred by a Gaussian kernel of standard deviation 10 and corrupted by
Gaussian white noise with standard deviation σ = 0.1. The image has size
192 × 192 × 96, and we assume half of the x1, x2 resolution in x3 direction,
i.e., the sampling steps � = (1, 1, 2). We observe that incorporating the non-
equidistant sampling produces a better result than the equidistant one. (See
Figure 6 for a comparison on real data.) (a) Original. (b) Blurred and noisy
data. (c) Partitioning assuming equidistant sampling steps. (d) Partitioning
with incorporation of non-equidistant sampling.

where ws = v + λs
μ . For the minimization with respect to v,

we obtain

arg min
v

Lμ

= arg min
v

‖Av − f ‖2
2 + μS

2

∥∥∥∥∥v− 1

S

S∑

s=1

(us − λs

μ
)

∥∥∥∥∥

2

2

. (12)

Iterating these minimization steps and the gradient ascent
steps in the Lagrange multipliers, we obtain the following
procedure:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
1 =arg minu1≥0

2γω1

μk
‖∇a1 u1‖0+‖u1−(vk + λk

1

μk
)‖2

2,

...

uk+1
S = arg minuS≥0

2γωS
μk

‖∇aS uS‖0 + ‖uS − (vk + λk
S

μk
)‖2

2,

vk+1 = arg minv ‖Av− f ‖2
2+ μS

2
‖v− 1

S

∑S
s=1(u

k
s − λk

s

μ
)‖2

2,

λk+1
s = λk

s + μk(v
k+1 − uk+1

s ), for all 1 ≤ s ≤ S.

(13)

We use as coupling parameters an increasing sequence
(μk)k∈N which we will specify later on.

A pseudocode of the procedure is given in Algorithm 1. First
we initialize the variable v with a solution of the corresponding
minimization problem in (13). In the main loop, we calculate
the solutions of the subproblems in the first S+1 lines of (13),
and then perform a gradient ascent step in the Lagrange
multiplier. This loop is iterated until we reach a maximum
number of iterations or another stopping criterion such as the
maximum squared �2 distance of the split variables ‖us −ut‖2

2
for s �= t . As final result, we return the average of the split
variables u1, . . . , uS . Next we explain how to solve the
subproblems involved in Algorithm 1.

B. Solution of the Tikhonov Step

Let us first consider the subproblem in the (S + 1)-th line
of (13). This is a Tikhonov problem of the form

v∗ = arg min
v

‖Av − f ‖2
2 + τ‖v − z‖2

2.

Differentiating the functional with respect to v reveals that a

minimizer v∗ satisfies

2A∗(Av∗ − f ) + 2τ (v∗ − z) = 0



STORATH et al.: FAST SEGMENTATION FROM BLURRED DATA IN 3D FLUORESCENCE MICROSCOPY 4861

Algorithm 1 Proposed Algorithm for the Inverse Potts Model
in 3D With Non-Negativity Constraints (P+

γ )

where A∗ denotes the adjoint of A (or the transpose if A is
given as real-valued system matrix). Resolving this equation
gives us the linear system

(A∗ A + τ I ) v∗ = A∗ f + τ z, (14)

where I denotes the identity. Thus, the computation of v∗
reduces to solving a linear system of equations. As the linear
system is typically very large we use iterative solvers such as
the conjugate gradients methods. To ensure fast convergence
we utilize a “warmstart”. That is, we use the solution of
the previous iteration vk as initial guess for the computation
of vk+1.

In various setups, the structure of the imaging operator can
be exploited for a significant acceleration. In the simplest case
of A being the identity we have that

v∗ = f + τ z

1 + τ
,

which is simply a weighted average of f and z. If A describes
the (circular) convolution with some convolution kernel φ,
i.e., Au = φ ∗ u, then we can use Fourier methods. Applying
the Fourier transform on both sides of (14) implies that the
Fourier transform of v∗, denoted by v̂∗, is given by

v̂∗
j = φ̂ j f̂ j + τ ẑ j

|φ̂ j |2 + τ
,

where j runs over all indices in the domain of v̂∗.

For vector-valued images, we take advantage of the fact
that the Tikhonov problem is separable with respect to the
components. That means, we can solve it componentwise for
each channel.

C. Solving the Potts Subproblems With
Non-Negativity Constraints

Now we look at the first S lines of the proposed
algorithm (13). There, we solve problems of the form

arg min
u≥0

γ ′ ‖∇au‖0 + ‖u − g‖2
2,

with some γ ′ > 0, an image g ∈ X = R
d1×d2...×dN ×C , and

a direction a ∈ Z
N \ {0}. For notational simplicity, we first

consider the case of a single channel image, i.e., C = 1.
We observe that the problem decomposes into univariate
Potts problems along paths indicated by the finite difference
vector a. That is, it remains to solve univariate Potts problems
with non-negativity constraints of the form

arg min
u∈Rn,u≥0

γ ′ ‖∇u‖0 + ‖u − h‖2
2. (15)

Here, h is a vector of length n where n is the length of
a one dimensional line in direction a ∈ R

3 with starting
pixel b ∈ R

3. To fix the ideas let us look at the example
a1 = (1, 0, 0). All 1D lines in this directions are parametrized
by the offset pixels b = (1, i2, i3) for i2 = 1, 2 . . . , d2 and
i3 = 1, 2 . . . , d3. (Recall that the image g is of dimension
d1 ×d2 ×d3.) For such an offset pixel b = (1, i2, i3), the data
h is given by h j = g j,i2,i3 = gb+ j a1. Thus we solve d2 · d3
times a univariate Potts problem (15) with data h specified
by the offset pixels b = (1, i2, i3) for i2 = 1, 2 . . . , d2 and
i3 = 1, 2 . . . , d3. For a general direction a, we proceed
analogously with respect to the data

h j = gb+ j a

and all suitable offset pixels b. Note that for the diagonal
directions, offset pixels from more than one face of the cube
are involved to parametrize all 1D lines through the cube,
and the lengths n of the 1D lines depend on the offset pixel
and on the dimensions.

It is well known that the unconstrained version of the
univariate Potts problem, i.e., arg minu∈Rn γ ′ ‖∇u‖0 +
‖u − h‖2

2, can be solved exactly by dynamic programming
[15], [57]–[60]. A quadratic time and linear space algo-
rithm for the univariate Potts problem was proposed by
Friedrich et al. [61] which we describe next. To this end, it is
convenient to use the Matlab-like notation hl:r = (hl , . . . , hr ).
We assume that we have already computed minimizers ul of
the Potts functionals Pγ (u) = γ ′‖∇u‖0+‖u−h1:l‖2

2 associated
with the partial data h1:l for each l = 1, . . . , r − 1 and some
r smaller than the number n of elements of h. Using this
information, the Potts functional associated to data h1:r can
be efficiently minimized via

min
u∈Rr

Pγ (u) = min
l=1,...,r

Pγ (ul−1) + γ + εl,r , (16)

where εl,r is the quadratic deviation of the data hl:r from
its mean. Here we use the convention that u0 is an empty
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vector and Pγ (u0) = −γ. A corresponding minimizer reads
ur = (ul∗−1, μl∗ , . . . , μl∗) where l∗ is a minimizing argument
of the righthand side of (16) and μl∗ denotes the mean
value of (hl∗ , . . . , hr ). We obtain a minimizer for full data d
by successively computing ur for each r = 1, . . . , n. The
described method can be implemented in O(n2) time and O(n)
memory using pre-computation of the moments and storing
only jump locations [61]. It has been shown that a significant
amount of configurations are unreachable and thus can be
skipped [34], [62] which improves the practical runtime by
a fourfold to fivefold factor.

We next adapt the above algorithm such that it incorporates
the non-negativity constraints. The basic dynamic program-
ming principle carries over. To account for the non-negativity
constraints we need to compute the quadratic deviation from
the best constant approximation ε+

l,r on all intervals. To this
end, we observe that the best non-negative constant approxi-
mation μ+

l,r for hl:r is given by

μ+
l,r = arg min

μ≥0

r∑

i=l

(μ − hi )
2 = max(0,

∑r
i=l hi )

r − l + 1
.

This leads to the expression for the approximation error

ε+
l,r = min

μ≥0

r∑

i=l

(μ − hi )
2

=
r∑

i=l

μ2
l,r − 2μl,r hi + h2

i

= (r − l + 1) μ2
l,r − 2μl,r

r∑

i=l

hi +
r∑

i=l

h2
i

= −(r − l + 1) μ2
l,r +

r∑

i=l

h2
i

= −max(0,
∑r

i=l hi )
2

r − l + 1
+

r∑

i=l

h2
i .

The value ε′
l,r can be evaluated in O(1) when we precompute

the cumulative sums Mr = ∑r
i=1 hi and Sr = ∑r

i=1 h2
i .

Hence, we obtain

ε+
l,r = −max(0, Mr − Ml−1)

2

r − l + 1
+ Sr − Sl−1.

We provide the complete pseudocode of the solver in
Algorithm 2.

The solver can be easily adapted to deal with vector valued
data, that is, when hi ∈ R

C for all i. To this end we consider
the squared approximation errors ε+

l,r,k on each channel k =
1, . . . , C, which are given by ε+

l,r,k = minμ≥0
∑r

i=l (μ−hi,k)
2.

The necessary value of ε+
l,r then consists of the sum of the

channelwise errors, thus ε+
l,r = ∑C

k=1 ε+
l,r,k . We stress that

this procedure is different to channelwise solution of the Potts
problem. In particular, the presented procedure enforces a
common jump set of all channels.

D. Computational Complexity and Parallelization

Assume for simplicity that the number of pixels is equal
in each direction, i.e., that d = d1 = . . . = dN . In each step

Algorithm 2 Fast Solver for the Univariate Potts Problems
With Non-Negativity Constraint (Subproblems of Type (15))

of (13), we have to solve d N−1 Potts problems of size d .
With the quadratic complexity of the Potts solver we get the
complexity O(d N+1) = O(M(N+1)/N ) where M denotes the
number of pixels. For vector valued data with C channels
we get O(M(N+1)/N C). It remains to treat the Tikhonov step
which is typically the most time consuming part. Here, a
linear system of equations has to be solved which amounts to
cubic complexity w.r.t. M in general. Frequently, the special
structure of A can be exploited for a significant speedup. If we
are in the above described case that we can utilize fast Fourier
transforms, then the evaluation of v∗ is O(C M log M) where
M is the number of pixels and C the number of channels.
The complexity grows linearly in the number of channels for
vector-valued data.

The time complexity can be reduced significantly by paral-
lelization. In fact, since the univariate Potts solver acts in each
step on nonintersecting lines on the data, we can execute all
d N−1 Potts solvers in parallel. For example, for N = 3 and
d = 100, d2 = 10000 univariate problems can be solved in
parallel in each step. Currently available graphics processing
units have typically around thousand processing units. Thus,
GPU parallelization can even be almost fully exploited in
relatively small problem sizes.
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IV. EXPERIMENTAL RESULTS

We illustrate the potential of our method for joint decon-
volution and segmentation of 3D wide field fluorescence
microscopy images. Before that, we discuss the choice of the
parameters and our implementation.

A. Algorithmic Setup

In our numerical experiments, we used the sampling-step
adapted weights of Section II-B with the ordering of the
ps given by (2). We initialized all v by arg minv ‖Av −
f ‖2

2 + μ0 S
2 ‖v‖2

2 and all other variables us , λs by 0. We
did not observe significant changes in the results for other
orderings of as or other reasonable initializations. By contrast,
the choice of the coupling sequence (μk)k∈N can have a
visible effect on the result and the runtime: the lower the
increments of μk , the better the results but also the higher the
runtime. The condition

∑
k μ

−1/2
k < ∞ ensures that the split

variables converge to each other. We omit the proof, as it is a
straightforward adaption of the proof for the two-dimensional
setup presented in [12]. In practice, slow progressions such
as μk = μ0k2.01, have the highest potential with respect to
reconstruction quality. Thus, if computation time is not critical,
we suggest to use slow progressions. Otherwise, one may try
a faster progression such as μk = μ02k . Here we use the
progression μk = μ01.05k which we found to be a fair tradeoff
between quality of the results and computational costs in the
present setup; see also [42].

B. Implementation and Runtimes

We have created two implementations of our method: a
sequential version for the CPU and a parallel version for
the GPU.

For the sequential version, we utilize Matlab with
C++/MEX files for the time-critical operations; i.e., the uni-
variate Potts solvers. The main advantage of this version is its
flexible integration with the Matlab computing framework. It
is, for example, possible to supply arbitrary proximal mapping
operators as Matlab function handles without changes to the
implementation of the algorithm. Furthermore, this implemen-
tation improves upon the computation time of our previously
proposed Java-based implementation for the two-dimensional
Potts problem (with A = id) [34]1 by a factor two.

The parallel version has been implemented for the GPU,
based on C++ and the CUDA framework. The GPU sig-
nificantly decreases the computation time provided that the
proximal mapping can be evaluated efficiently on the GPU. In
the present work, the imaging operator possess an efficient
implementation based on the CUDA FFT library cuFFT.
In our experiment (Table I), we processed 3D images of
different sizes with our sequential CPU and our parallel GPU
version. Benchmarking was performed using a workstation
with 32GB RAM, a core i7-4770k processor with 3.5GHz
and a GTX Titan Black GPU. The software used was Matlab
2015b, CUDA 7.0 and gcc 4.7.3. From Table I, we observe
that the parallel version leads to an eighteen-fold speedup. This

1Implementation of the method in [34] is available at http://pottslab.de.

TABLE I

COMPARISON OF CPU AND GPU RUNTIMES. FOR THE LARGEST IMAGE,
THE PARALLELIZED GPU IMPLEMENTATION YIELDS A SPEEDUP

OF AROUND 18 TIMES. THIS WAY, EVEN LARGE VOLUMES

CAN BE PROCESSED IN REASONABLE TIME

potential is almost fully exploited even for moderate image
dimensions of 200 × 200 × 50. Large volumes of dimension
400 × 400 × 50 can be processed in less than three minutes.
The tradeoff is that the GPU implementation requires more
effort to be adapted to alternate imaging setups; e.g. changing
the proximal mapping requires implementation of the operator
in CUDA and recompilation of the entire algorithm.

The core algorithm has two parts which benefit massively
from GPU acceleration, i.e. solving the 1D Potts problems in
parallel, and, to a lower degree, the calculation of the weighted
mean solution from all 1D results. We implemented the solver
for the 1D Potts problem as a custom kernel. The calculation
of the weighted mean solution is implemented using cuBLAS,
a GPU accelerated variant of the basic linear algebra library.
This part does not require any custom kernels. The RAM
requirements on the GPU scale with O(M S), where M is the
total number of pixels of the image, and where S denotes the
number of directions used for the discretization of the Potts
prior. The factor S is due to the fact that the implementation
solves the Potts problems for multiple directions at once in
an asynchronous fashion; this allows us to avoid latency from
kernel calls and results in higher speedup for small-to-medium
sized problems at the cost of increased RAM requirement.
In practice, we observed that images with a size of up to
GPURAM divided by 20 could be processed without issues.

We compared the results produced by the GPU and the CPU
implementation of our algorithm. For the 1D solvers, we did
not observe any differences in the resulting 1D segmentations.
Further, we did not observe any difference when segmenting
images for the case A = id. When segmenting from blurred
data, we observed that about 0.1 percent of all voxels ended up
in different segments when comparing the GPU and the CPU
implementation. Hence, there is a minor difference between
the results obtained on the GPU and on the CPU. We believe
that this is due to different rounding effects.

C. Simulation Study

We performed a simulation study for joint reconstruction
and segmentation from blurred data. The experimental setup
is as follows. As test data, we created two series of structurally
different segmentation phantoms of size 200 × 200 × 50. The
first series consists of 50 cell-type phantoms. We used the
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Fig. 4. Qualitative results of the simulation study for the first type of phantoms: The first two and the last two columns show the segmentation results for
the two example phantoms in (a). The first and the third column have a higher data quality (scaling factor 104), the second and fourth column have a lower
quality (scaling factor 10). The segmentations in (c) and (d) are encoded as piecewise constant gray-level images where the gray-values correspond to the
estimated mean value on each segment. In (e), the results of (d) are shown in pseudocolors. We observe that the baseline method captures the cell boundary
well but also produces fuzzy results in the body and the organelles. The proposed method better recovers the organelles; it has a moderate oversegmentation
at the boundary. (See Table II for quantitative results.) (a) Two examples of the first type of segmentation phantoms. (b) Blurred and noisy data: the images
were scaled by 104 (column 1 and 3) and by 10 (column 2 and 4) before imposing the Poisson noise. (c) Segmentation result using the proposed method.
(d) Segmentation result using the baseline method. (e) Results of (d) visualized in the jet colormap.
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Fig. 5. Qualitative results of the simulation study for the second class of
phantoms (compare Figure 4 and Table III). For the baseline method, the
parameters have been optimized on an image-by-image basis, whereas for the
proposed method, the parameters already used for the first type of phantoms
have been employed without adaption. (a) Second type of segmentation
phantoms. (b) Blurred and noisy data: images were scaled by a factor of 10
before imposing the Poisson noise. (c) Segmentation result using the baseline
method. (d) Segmentation result using the proposed method. (e) Results of
(d) visualized in the jet colormap.

TABLE II

QUANTITATIVE RESULTS OF THE SIMULATION STUDY FOR THE FIRST
CLASS OF PHANTOMS: THE TABLE SHOWS THE AVERAGE RAND

INDEX OVER ALL SIMULATED 50 PHANTOMS ALONG WITH THE

STANDARD DEVIATION. THE ROWS ARE INDEXED BY THE

SCALING OF THE DATA WHERE A HIGHER SCALING MEANS
HIGHER DATA QUALITY (CORRESPONDING TO A LOWER

NOISE LEVEL). THE PROPOSED METHOD

CONSISTENTLY YIELDS A HIGHER
RAND INDEX. (SEE FIGURE 4 FOR

QUALITATIVE RESULTS)

TABLE III

QUANTITATIVE RESULTS OF THE SIMULATION STUDY FOR THE SECOND

CLASS OF PHANTOMS. (SEE TABLE II FOR THE DESCRIPTION

AND FIGURE 5 FOR QUALITATIVE RESULTS)

function “phantom3d”2 to create three overlapping ellipsoids
to represent a cell body, a boundary of 11 pixels width to repre-
sent a cell boundary and complemented it with a few ellipsoids
representing organelles. Cell body, boundary and organelles
were each given distinct gray values. Two typical examples of
the generated phantoms are shown in Figure 4. Each of the
50 phantoms has different randomly shifted ellipsoid centers.
The second series of phantoms consists of 50 images of
size 200 × 200 × 50 containing randomly rotated and shifted
versions of geometric primitives. Two typical examples are
depicted in Figure 5. All phantoms have a dynamic range
in [0, 100]. We blurred the phantoms using a Gaussian point
spread function. Then, we corrupted the resulting image by
Poisson noise. We produced different image qualities (or noise
levels) by simulating different photon counts. To this end, we
scaled the blurred images by the factor 10p, for p = 0, . . . , 4,
before imposing the Poisson noise. Note that a higher scaling
factor means higher data quality.

To measure the segmentation quality of the computed mul-
tilabel segmentations, we use the Rand index (RI) [63], [64],
which we briefly explain in the following. (Note that the
frequently used Dice index is limited to two-label segmen-
tations.) Let X = {x1, . . . , xN } be a given set of points and

2Available from the Matlab File Exchange.
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Fig. 6. First real data experiment: Joint reconstruction and segmentation of a ball-shaped fluorescence bead with diameter 2.5 μm. The sampling steps are
64.5 nm with respect to the x1 and x2 axes and 160 nm with respect to the x3 axis. The true size of the bead is indicated by dashed lines. (Note that the
ball-shaped bead becomes ellipsoidal in the displayed pixel coordinates due to the non-cubic grid.) We observe that the baseline approach overestimates the
diameter in the axial direction. The proposed approach recovers the true dimensions of the bead significantly better. The proposed weight design adapted to
the non-equidistant sampling gives an improved resolution in x3-direction compared to the equidistant design. (a) Acquired data (2563 voxel). (b) PSF of
the microscope (logarithmic scale). (c) Richardson-Lucy deconvolution (Runtime: 59 sec). (d) K-means on (c) with K = 2 (Runtime: 7.6 sec). (d) Proposed
method using equidistant weight design (γ = 0.06, Runtime: 142 sec). (e) Proposed method using equidistant weight design (γ = 0.06, Runtime: 142 sec).
(f) Result of (e) visualized in the jet colormap. (g) Proposed method using weights adapted to non-equidistant sampling (γ = 0.06, Runtime: 293 sec).
(h) Result of (g) visualized in the jet colormap.

let Y and Y ′ be two partitionings of this set. (In our case,
X is the set of pixels, and Y and Y ′ are the partitionings
given by the ground truth and by the result of the employed
method, respectively.) The Rand index (RI) is defined by the
expression RI(Y, Y ′) = (N

2

)∑N
i< j ti j . Here ti j is equal to one

if there exist k and k ′ such that both xi and x j are in both Yk

and Y ′
k′ , or if xi is in both Yk and Y ′

k′ while x j is in neither Yk

or Y ′
k′ . Otherwise, ti j is set to zero. The Rand index is bounded

from above by 1; a higher value means a better match. For
the evaluation of the Rand index we used the implementation
of K. Wang.3

As baseline approach, we use a two stage method. We first
performed a Richardson-Lucy deconvolution [1], [2] which
is suitable in the presence of Poisson noise. We optimized
the number of Richardson-Lucy iterations such that the best
result with respect to the mean squared error to the original
image is achieved. On this result, we applied a k-means
clustering where we optimized the k-means parameter K with
respect to Rand index to the ground truth segmentation. Here,
the scan range for the parameter K was set from half to
twice the true number of labels of the ground truth. For the
baseline approach, the parameters were optimized for each

3Available from the Matlab File Exchange.

phantom and each noise realization individually to get as good
results as possible. For both stages, we used the reference
implementations of Matlab. For the proposed method, we
optimized the model parameter γ and the initial coupling
parameter μ0 with respect to the Rand index. For the proposed
method, for each of the five noise levels, a single image of the
first class of phantoms was used to adjust the hyperparameter.
Then, depending on the noise level, these parameters were
applied to each of the phantoms. (They may be seen as the
validation set; the “training” image was not included in this
set.) For the baseline method, hyperparameters were scanned
for each of the 50 phantom image individually, i.e. each
image was used both for test and validation, creating a bias
advantageous for the performance of the baseline method.

The outcome of the first series of phantoms is reported
in Figure 4 and in Table II. Figure 4 exemplarily shows the
outcome of the experiment for two different phantoms and two
different noise levels. In Table II, we report the quantitative
results averaged over all 50 cell-type phantoms. The analogous
results for the geometric primitive phantoms are given in
Figure 5 and in Table III. Qualitatively, we observe that the
proposed method produces more contiguous segments than the
baseline method. Quantitatively, we observe that the proposed
method provides a higher Rand index than the baseline method
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Fig. 7. Second real data experiment: Deconvolution and segmentation of the widefield microscopy image of a C-Elegans embryo. The data (a) was acquired
using the same setup as in Figure 6. (b) The baseline approach captures parts of the nuclei well, but it has also incomplete segments and fuzzy boundaries
in x3 direction. (c,d) The proposed method produces more regular and complete segments. We observe a moderate over-segmentation in the cell body.

consistently for all noise levels. This indicates an improved
segmentation quality. Both methods tend to oversegmentation,
i.e., the number of produced segments is larger than the
number of true segments, which can be addressed by post-
processing.

D. Results on 3D Widefield Fluorescence Microscopy Data

Next we show experimental results on real 3D widefield
fluorescence microscopy data. The data was acquired using an
Olympus CellR widefield microscope [65].4 The point spread
function (PSF) of the image acquisition setup is shown in
Figure 6. It exhibits good localization in the x1-x2 plane but
has a wide spread in the x3 direction. The sampling steps
are given by �1 = �2 = 64.5 nm and �3 = 160 nm. For the
baseline approach we used 30 Richardson–Lucy iterations, and
performed a k-means clustering where we chose the number
of labels K to match the expected number of labels in the

4The data set is freely available at http://bigwww.epfl.ch/deconvolution/.

image. (For further comparison, results for other deconvolution
methods on the present data set can be found in [65]–[67].) For
the proposed method, we used the initial coupling parameter
μ0 = 10−6 as proposed in [12]. The model parameter γ was
chosen depending on the experiment as indicated below.

1) Fluorescence Bead: The first real data set of size 2563

is the image of a fluorescence bead with known diameter
2.5 μm. We have manually chosen the γ -parameter to capture
the topological structure of the hollow sphere. Figure 6 shows
the segmentation of the bead from the linear measurements.
We observe that the baseline approach overestimates the size
of the bead with respect to the x3 direction. The output of the
proposed method matches significantly better with the true
dimensions of the bead. We observe that it slightly overseg-
ments the bead (two segments instead of one). However, such
oversegmentation can typically be resolved relatively easy by
region merging.

2) C-Elegans Embryo: The second real data set is the
microscopic image of a C-elegans embryo using a DAPI
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fluorescent stain. We downsampled the original image size by
the factor two in each dimension to obtain an image of size
337×357×56. We have manually chosen the γ -parameter such
that the white organelles in the cells are captured as individual
segments and that the main cell body is only moderately
oversegmented. Figure 7 shows the result of this experiment.
The baseline approach captures most nuclei sharply but it has
some incomplete segments and has partially fuzzy boundaries
in the x3 direction. The proposed method has better localized
boundaries. Again, we observe a slight oversegmentation in
the cell body. The runtime amounts to around 43 seconds for
the baseline method, to around 29 minutes for the sequential
CPU implementation, and to around 291 seconds using the
parallel GPU implementation.

V. CONCLUSION AND FUTURE RESEARCH

We have developed a fast algorithm for segmenting
3D images from linear measurements based on the Potts
model; in particular, we addressed the specific challenges of
the 3D setup. First, we proposed a new design for discretiza-
tions of the jump penalty to address the issue of non-cubic
grids frequently appearing in 3D. Secondly, we presented a
highly parallel implementation on the GPU which allowed us
to process even large volumes in reasonable computation time.
Thirdly, to take the non-negativity of many physical quantities
into account, we incorporated corresponding constraints into
the model and into the proposed algorithmic scheme. We have
illustrated the potential of our method for joint image deconvo-
lution and segmentation of 3D widefield microscopy images.
We note that the method can be adapted to other imaging
setups such as x-ray computed tomography and photoacoustic
tomography. The feasibility condition is that we can compute
the proximal mapping of the data term in reasonable time.

Future directions of research include the adaption to further
imaging setups such as magnetic particle imaging and the
adaption to the (piecewise smooth) Mumford-Shah functional
as in [68].

APPENDIX A
PROOF OF PROPOSITION 1

First let x ∈ N be one of the coordinate directions, say
x = a1 = (1, 0, 0). Then, the righthand side of (4) is given
by ‖x‖2 = 1. For the lefthand side, we obtain

‖x‖N =
S∑

s=1

ωs |〈x, as〉| =
S∑

s=1

ωs |(as)1|
= ω1 + ω4 + ω5 + ω6 + ω7 + ω10 + ω11 + ω12 + ω13.

By symmetry, we have ω1 = . . . = ω3, ω4 = . . . = ω9, and
ω10 = . . . = ω13. Plugging this into (4) leads to the condition

ω1 + 4ω4 + 4ω10 = 1.

Note that the other finite difference vectors in coordinate
directions, a2 and a3, lead to the same equation. Similarly, the
planar diagonals, such as x = (1, 1, 0), lead to the equation

2ω1 + 6ω4 + 4ω10 = √
2,

and the volume diagonals (e.g., x = (1, 1, 1)) yield

3ω1 + 6ω4 + 6ω10 = √
3.

Solving this linear system with respect to ω1, ω4 and ω10 gives
us the weights claimed in (6).

APPENDIX B
DERIVATION OF THE ADMM ITERATION

The first step is to rewrite the augmented Lagrangian (10)
in its scaled form; see [56]. To this end, we rewrite

〈λs , v−us〉+ μ

2
‖v−us‖2

2 = μ

2
‖v−us + λs

μ ‖2
2− 1

2μ
‖λs‖2

2,

(17)

so that

Lμ({us}S
s=1, v, {λs }S

s=1)

=
S∑

s=1

γωs‖∇as us‖0 + μ

2
‖v − us + λs

μ ‖2
2 − 1

2μ
‖λs‖2

2

+ ‖Av − f ‖2
2. (18)

Then, as the last two terms do not depend on us , minimization
with respect to us gives (11).

To bring arg minv Lμ({us}S
s=1, v, {λs }S

s=1) into a convenient
form we combine the second S terms as

S∑

s=1

μ

2
‖v − us + λs

μ ‖2
2 = μS

2

∥∥∥∥∥v − 1

S

S∑

s=1

(us − λs

μ
)

∥∥∥∥∥

2

2

+ C

with a constant C ∈ R that does not depend on a. Here, we
used the fact that

∑
i xi (a − bi )

2 = (
∑

i xi )(a −
∑

i bi xi∑
i xi

)2 + C ′

for a, b1, . . . , bN ∈ R and x1, . . . , xN > 0 and a constant
C ′ ∈ R that does not depend on a, see e.g. [12]. Minimizing
with respect to v yields (12).
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