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We study jump-penalized estimators based on least absolute deviations which are often referred to as Potts
estimators. They are estimators for a parsimonious piecewise constant representation of noisy data having
a noise distribution which has heavier tails or which leads to many severe outliers. We consider real-valued
data as well as circle-valued data which appear, for instance, as time series of angles or phase signals.
We propose efficient algorithms that compute Potts estimators for real-valued scalar as well as for circle-
valued data. The real-valued version improves upon the state-of-the-art solver w.r.t. to computational
time. In particular for quantized data, the worst case complexity is improved. The circle-valued version
is the first efficient algorithm of this kind. As an illustration, we apply our method to estimate the steps
in the rotation of the bacterial flagella motor based on real biological data, and to the estimation of wind
directions.

Keywords: circle-valued data; jump penalization; least absolute deviation; piecewise constant signal; Potts
estimator; step detection.

1. Introduction

Signals or time-series with underlying piecewise constant groundtruth appear in various biological and
medical applications; for example, the cross-hybridization of DNA (Snijders et al., 2001; Drobyshev
et al., 2003; Hupé et al., 2004), the reconstruction of brain stimuli (Winkler et al., 2005), single-molecule
fluorescence resonance energy transfer (Joo et al., 2008), cellular ion channel functionalities (Hotz et al.,
2013) and photo-emission spectroscopy (Frick et al., 2014a). A classical engineering example based on
piecewise constant functions is crack detection in fracture mechanics. For further applications, we refer
to Little & Jones (2011a,b) and Frick et al. (2014a), and the references therein. Circle-valued time-series
with underlying piecewise constant model appear for example in the rotations of the bacterial flagellar
motor; see Sowa et al. (2005), Sowa & Berry (2008), Mora et al. (2009).

For such data, jump-penalized estimators are powerful tools. A classical instance is the least squares
Potts estimator. It measures the complexity of the signal in terms of the number of jumps and penalizes
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the sums of the squared deviations from data. While the least squares approach is optimally matched to
the Gaussian noise model, estimators based on least absolute deviations are more robust to noise with
heavier tailed distributions such as Laplacian noise, and they perform better in the presence of outliers.
The least absolute values Potts estimator is given by

x̂ = arg min
x∈XN

γ ‖∇x‖0 +
∑N

n=1
wn d(xn, yn). (Pγ )

The first term ‖∇x‖0 = |{n : xn+1 �= xn}|measures the complexity of x in terms of the number of jumps,
while the second term measures fidelity to data y ∈ XN , where d(x, y) is a metric on the space X and
w is a vector of positive weights. Here, we consider the spaces X = R with the standard distance, and
X = S

1 = T with the arc length distance. The regularization parameter γ > 0 controls the balance
between data deviation and jump penalty.

For scalar data (X = R with the standard distance), the least absolute values Potts estimator (Pγ )
takes the familiar form

x̂ = arg min
x∈RN

γ ‖∇x‖0 + ‖x − y‖1,w, (1)

which we refer to as L1-Potts estimator. Here the L1 norm is formed with respect to the weight vector
w. Due to their appearance in context of any cyclic data such as phase data or periodic data, we also
consider circle-valued data, i.e., the data space X = S

1 = T with d being the arc length distance. This
results in

x̂ = arg min
x∈TN

γ ‖∇x‖0 +
∑N

n=1
wn arclength(xn, yn). (2)

A Potts estimate is a candidate signal that minimizes the corresponding Potts functional; thus the esti-
mates enjoy an optimal tradeoff—optimal with respect to the functional—between data fidelity and
complexity measured in terms of the number of jumps. From a Bayesian perspective, Potts functionals
are negative posterior loglikelihood functions with an improper prior. Minimal points correspond to the
respective maximum a posteriori estimates. These connections are rather of formal than of analytic nature
when considering non-finite data spaces; we refer to Winkler et al. (2005) for a detailed discussion.

1.1 Prior and related work

Potts estimators are named after Renfrey B. Potts who used the prior, respectively, the regularizing term
of the functional, in his work on statistical mechanics; see Potts (1952). Related investigations can even
be traced back to Ising (1925). Geman & Geman (1984) were one of the first to utilize the Potts model
with least squares data fidelity (L2-Potts estimator) in the context of statistical image processing. In
the work of Blake (1983) and Blake & Zisserman (1987), the L2-Potts model appears as limit case of
the nowadays called Blake–Zisserman model. In image processing, the Potts model is also known as
piecewise constant Mumford–Shah model after the seminal work of Mumford & Shah (1989). Donoho
(1999) considers related bivariate estimators which are called wedgelets. For a thorough account on the
history, we refer to Winkler et al. (2005) and the references therein.

More recently, Boysen et al. (2007, 2009) have given convergence rates and have shown consistency
for the L2-Potts estimator. Wittich et al. (2008) have shown uniqueness of the L2-Potts estimate for
almost all input data and idempotence of the corresponding solution operator. In the context of inverse
problems, convergence rates have been investigated by Frick et al. (2014b), and iterative algorithms by
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Fornasier & Ward (2010) and Weinmann & Storath (2015). It is well known that an L2-Potts estimate
can be computed exactly using dynamic programming; see Yao (1984), Mumford & Shah (1985, 1989),
Auger & Lawrence (1989), Chambolle (1995), Winkler & Liebscher (2002), Jackson et al. (2005). The
current state-of-the-art solver is the one of Friedrich et al. (2008) which has quadratic time and linear
memory complexity. Under the additional assumption that the number of jumps of the underlying signals
grows linearly with the signal length, Killick et al. (2012) could improve this to a linear time algorithm.

In contrast to the L2 scenario, significantly less is known on Potts estimators with L1 data terms.
One of the reasons is that the L1 norm is typically more intricate due to the non-differentiability and the
missing relation to the inner product. This stands in contrast to the fact that the L1 Potts estimator has
several advantages over the least squares variant: as already mentioned, L1 data terms are more robust
to noise with heavy tailed distributions and in the presence of outliers. Friedrich et al. (2008) observed
that they give in practice more robust estimates on the change points (i.e., the jumps) for the considered
gene expression data. Remarkably, the L1-Potts estimator has a certain blind deconvolution property:
it reconstructs piecewise constant signals x from given blurred data y = κ ∗ x, whenever the unknown
positive symmetric kernel κ is sufficiently narrow supported; for details see Weinmann et al. (2015).
Such properties are not shared by the L2-Potts and L1-TV estimators. Concerning the computation of
minimizers, Friedrich et al. (2008) were the first to give an efficient algorithm for computing an estimate
of O(N2 log N) time and O(N2) memory complexity. The authors of the present article improved this
to O(N2) time and O(N) space complexity; see Weinmann et al. (2015). Friedrich et al. (2008) also
consider computing the Potts estimator for all parameters γ simultaneously; they propose an O(N3) time
and O(N2) space algorithm for real-valued data. (We note that the present work deals with quantized
and non-quantized data, with values on the real line or on the circle.)

Closely related estimators are the TV estimators which penalize the total variation ‖∇x‖1=∑
n |xn+1 − xn| instead of the number of jumps. In particular, L1-TV estimators have been consid-

ered in, e.g., Fu et al. (2006), Clason et al. (2009), Dong et al. (2009), Dümbgen & Kovac (2009),
Chambolle & Pock (2011), Kolmogorov et al. (2016). The Potts prior is a stronger prior in the sense
that the underlying signal class of piecewise constant signals is smaller. However, whenever the signal
under consideration belongs to this class, Potts estimators are more robust to higher noise levels and
enjoy better reconstruction properties. On the flipside, for real-valued data, the computation of a Potts
estimate is more challenging because the Potts functional is, in contrast to the L1-TV functional, not
convex.

The Potts estimators discussed above are related to the simultaneous change point estimator
(SMUCE) recently proposed by Frick et al. (2014a). In contrast to the discussed Potts estimators,
which measure the data fidelity in terms of the L1 or the L2 norm, SMUCE uses a certain multiscale test
statistics. The computational procedure is based on the aforementioned dynamic programming scheme
proposed by Friedrich et al. (2008) for Potts estimators. A variant that controls the false discovery rate
has been proposed by Li et al. (2016). Frick et al. (2012) consider statistical multiresolution estimators
with �∞ constraints. Xia & Qiu (2015) study an information criterion for jump-penalized estimation. We
refer to Little & Jones (2011a,b) and the references therein for further related jump-penalized estimators
and algorithms for the reconstruction of piecewise constant real-valued signals.

Besides real-valued data, there is an emerging interest in estimation of circle-valued data. Regression
of circular data has been considered by Fisher & Lewis (1983) and by Downs & Mardia (2002), and
LASSO/TV type problems by Giaquinta et al. (1993), Cremers & Strekalovskiy (2013), Lellmann et al.
(2013), Weinmann et al. (2014), Bergmann et al. (2014), Storath et al. (2016). This is motivated by
their appearance as data spaces in various contexts including phase data, orientation data, as well as
nonlinear color spaces. We refer to Fisher (1995) and to Jammalamadaka & SenGupta (2001) for an
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overview on statistics of circle-valued data. Statistical issues on Riemannian manifolds in general are the
topic of Oller & Corcuera (1995), Bhattacharya & Patrangenaru (2003), Bhattacharya & Patrangenaru
(2005), Pennec (2006), Fletcher (2013). For manifold-valued data, and thus for circle-valued data in
particular, an algorithm for the Potts problem has been proposed by Weinmann et al. (2016). However,
for circle-valued data, it is not guaranteed that the algorithm converges to a global minimizer. Moreover,
the resulting algorithm is of iterative nature and a faster algorithm would be desirable.

1.2 Contributions

In this article, we study least absolute values Potts estimators for real-valued as well as for circle-
valued data. To our knowledge, Potts estimators for circle-valued data have not been studied yet. Our
contributions are as follows: (i) We provide new algorithms which yield global minimizers of the Potts
problem for real-valued data (cf. Equation (1)) as well as for circle-valued data (cf. Equation (2)),
where the data can be quantized or non-quantized; (ii) we propose a strategy to compute Potts estimates
for all regularization parameters γ > 0 simultaneously with moderate extra effort; and (iii) we provide
numerical experiments on synthetic and real-life data.

Concerning (i), the key ingredient is the reduction of the search space to a not a priori fixed data
dependent set V N . More precisely, for the case of circle-valued data, we show that we can reduce the
search space to V N , where V contains the unique values of the data y and its antipodal points. The
reduction of the problem size allows us to employ the Viterbi-algorithm; see Viterbi (1967), Bellman
& Roth (1969), Blake & Zisserman (1987), Felzenszwalb & Zabih (2011). By exploiting the special
structure of the Potts penalty as described in Felzenszwalb & Huttenlocher (2006), this leads to an
algorithm of complexity O(KN), where K ≤ 2N is the number of elements in the discrete set V . To
our knowledge, this is the first exact algorithm for the Potts problem with circle-valued data. For scalar
real-valued data, we proceed analogously to obtain a solver of complexity O(KN). We show that the
algorithm has complexity of linearithmic order in probability when the components of the data vector y
are independent, discrete random variables which are not too heavy tailed. We stress that the proposed
approach is fundamentally different from those of Friedrich et al. (2008) and Weinmann et al. (2015). The
latter ones employ a different dynamic programming scheme, and they do not use a strategy to reduce the
search space.

Concerning (ii), we consider the closely related problem of jump-constrained least absolute values
approximation, which we call J-jump sparsity problem. We propose an algorithm that solves the J-jump
sparsity problem for all possible number of jumps in O(KNL), where L ≤ N − 1 denotes the number of
jumps of the data. Based on this complete scanning, we are able to determine all intervals for γ , where
the solution does not change, and all corresponding estimates. Again, our approach relies on a different
discrete search space than the O(KN2) algorithm of Friedrich et al. (2008) for solving for all model
parameters γ simultaneously. In particular, our method improves upon the computational complexity of
Friedrich et al. (2008) for quantized data.

Concerning (iii), we provide a series of numerical experiments on the proposed algorithm. For real-
valued (non-quantized) data, we observe that our approach is significantly faster than the previously
proposed solver of Weinmann et al. (2015). (We recall that the algorithm of Weinmann et al., 2015 is
an O(N2) time and O(N) space algorithm improving the O(N2 log N) time and O(N2) space algorithm
of Friedrich et al., 2008.) As a tradeoff, the memory consumption is O(KN) as opposed to the linear
memory complexity of Weinmann et al. (2015). Concerning circle-valued data we observe that the
proposed algorithm, which is the first one proposed for this problem, yields reasonable runtimes. Further,
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we apply our method to real data: we estimate the steps in the rotation of the bacterial flagella motor
(Sowa et al., 2005) and time series of wind directions.

1.3 Outline of the article

In Section 2, we propose efficient algorithms for computing Potts estimates with scalar or circle-valued
data. Section 3 deals with the closely related J-jump sparsity problem. In Section 4, we compute solutions
of the Potts problem for all parameter simultaneously. Numerical experiments on synthetic data and on
real data are conducted in Section 5.

2. Efficient computation of the Potts estimator

We develop efficient solvers for the Potts problem (Pγ ) for circle-valued and for real-valued data. We first
reduce the infinite search space to a finite set, and then utilize the Viterbi algorithm with an acceleration
proposed by Felzenszwalb & Huttenlocher (2006).

2.1 Dimensionality reduction for circle-valued and scalar data spaces

Our first step towards computing a global minimizer of the Potts functional (Pγ ) with circle-valued and
real-valued data is the reduction of the search space to a finite set. In the following, we use the notation
Val(y) to denote the set of values of a tuple y ∈ XN , i.e.,

Val(y) = {v ∈ X : there is 1 ≤ n ≤ N s.t. yn = v}.

We recall that a (weighted) median μ of y ∈ XN is defined as minimizer of the functional z 	→∑N
n=1 wn d(z, yn); see e.g., Fletcher et al. (2009). For scalar data, it is well known that the set of values

of y contains at least one median. More precisely, there is μ ∈ arg minz∈R

∑N
n=1 wn |z − yn| such that

μ ∈ Val(y). In the case of circle-valued data, a median is contained in the set of values Val(y) or the set
of antipodal points Val(−y):

Lemma 1 Let y ∈ T
N . The set V = Val(y) ∪ Val(−y) contains a (weighted) median of y.

Lemma 1 is most probably known. Since we did not find it in the literature, we provide a short proof
in the Appendix.

The key to a reduction of the search space is the following statement on solutions of the Potts
problem.

Theorem 2 Let γ > 0. For real-valued data y ∈ R
N , we let V = Val(y); for circle-valued data y ∈ T

N ,
we let V = Val(y) ∪ Val(−y). Then the Potts problem (Pγ ) has a solution x̂ fulfilling x̂ ∈ V N .

The proof is given in the Appendix.
We next discuss how to determine the reduced search space V when data y is given. In many setups,

we can a priori declare a set U that is only slightly larger than V or, in the best case, equal to V . Then it
is convenient to use this set U. For example, we can use U = {0, . . . , 255} for an 8-bit signal. If there is
no such set we have to determine V algorithmically. A simple method to do so is based on sorting of y.
Then, duplicate elements are adjacent and can be easily removed. However, this procedure may exceed
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the complexity of the subsequent step (see Section 2.2), because general purpose sorting algorithms are
O(N log N). To avoid sorting, we utilize the following simple procedure: We create an empty list V .
Then we iterate over the components of y, that is, for n = 1, . . . , N . If yn is not in the list, we append it
to V . In case of circle-valued data, we additionally append the antipodal points. The procedure needs at
most K = |V | comparisons at each step, thus the procedure is O(KN).

2.2 A Viterbi-type algorithm for the reduced problem

Theorem 2 allows us to reduce the infinite search spaces R
N and T

N in (Pγ ) to the finite set V N , which
is specified in that theorem. Thus, it remains to solve

arg min
x∈VN

γ ‖∇x‖0 +
∑N

n=1
wn d(xn, yn). (3)

To this end, we use dynamic programming. Recall that the basic idea of dynamic programming is to
solve a complex problem by reducing it to smaller subproblems; see Bellman (1957). In the following,
we denote the cardinality of V by K . It is useful to equip the set V with indices, i.e., V = {v1, . . . , vK}.
(Note that any ordering is valid.)

We utilize a dynamic programming scheme developed by Viterbi (1967); see also Forney (1973).
Related algorithms have been proposed by Bellman & Roth (1969) and Blake & Zisserman (1987).
Here, we review a special instance of the Viterbi algorithm proposed by Felzenszwalb & Huttenlocher
(2006); see also Felzenszwalb & Zabih (2011). Assume that we aim at minimizing an energy functional
of the form

E(x1, . . . , xN) = γ
∑N−1

n=1
h(xn, xn+1)+

∑N

n=1
wn d(xn, yn), (4)

where x1, . . . , xN can take values in a finite set V and where h is an energy functional on V 2. The Viterbi
algorithm solves this problem in two steps: tabulation of energies and reconstruction by backtracking.
For the tabulation, the starting point is the table B1 ∈ R

K given by

B1
k = w1d(vk , y1) for k = 1, . . . , K .

We successively compute for n = 2, . . . , N the tables Bn ∈ R
K which are given by

Bn
k = wnd(vk , yn)+min

l
{Bn−1

l + γ h(vk , vl)}, for k = 1, . . . , K . (5)

The entry Bn
k represents the energy of a minimizer on data (y1, . . . , yn) whose endpoint is equal to vk . For

the backtracking step, it is convenient to introduce an auxiliary tuple l ∈ N
N which stores minimizing

indices. We initialize the last entry of l by lN = arg mink BN
k . Then we successively compute the entries

of l for n = N − 1, N − 2, . . . , 1 by

ln = arg min
k

Bn
k + γ h(vk , vln+1). (6)

Eventually, we reconstruct a minimizer x̂ from the indices in l by x̂n = vln , for n = 1, . . . , N . The result
x̂ is a global minimizer of the energy (4); see Felzenszwalb & Zabih (2011).

As proposed by Felzenszwalb & Huttenlocher (2006), the special structure of the Potts prior can be
exploited to streamline the computation. First note that the reduced Potts problem (3) corresponds to the
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functional defined by h(v, w) = 1 for v �= w and h(v, v) = 0. This allows to simplify the second term in
(5) to

min
l
{Bn−1

l + γ h(vk , vl)} = min{γ +min
l

Bn−1
l ; Bn−1

k }.

It follows that the table Bn can be filled by the two-step procedure

⎧⎨
⎩

z = min
l

Bn−1
l ,

Bn
k = wnd(yn, vk)+min{γ + z; Bn−1

k }, for k = 1, . . . , K .
(7)

Now z can be precomputed and reused for all table entries Bn
k for k = 1, . . . , K . Since both lines of (7)

are O(K), the computation of the table Bn is O(K). Hence, this algorithm is O(KN).

2.3 Complete solver for the Potts problem

The computation of the global minimizer of the Potts problem (Pγ ) is performed in two steps: computa-
tion of the reduced search space V followed by the above variant of the Viterbi algorithm. A pseudocode
of the complete algorithm is given in Algorithm 1. We record the following:

Theorem 3 Algorithm 1 computes a global minimizer of the Potts problem (Pγ ) with scalar or circle-
valued data in O(KN).

The proof is given in the Appendix.

For the Potts problem with scalar data, a solver of complexity O(N2 log N) has been proposed by
Friedrich et al. (2008) and improved to O(N2) by Weinmann et al. (2015). These methods use also the
dynamic programming principle, but with a fundamentally different tabulation scheme. It is based on
computing the median deviations on all O(N2) intervals. In contrast, the tabulation in Algorithm 1 is
based on the distances of single data points yn to all the K median candidates. For the Potts problem
with circle-valued data, no efficient solver has been proposed yet to the best of our knowledge.

2.4 Algorithmic complexity for quantized data

In general, the number of elements of V , denoted by K , is less than or equal to the number of data points
N for scalar data and less than or equal to 2N for circle-valued data. Thus the worst case complexity of
Algorithm 1 is O(N2). In many situations, K is significantly smaller than N . For quantized data on the
unit circle, the number of discrete values K is bounded. Thus we obtain linear complexity in this case.

In the case of quantized data on the real line, the number of values might not always be bounded.
However, we can give a bound for the following typical situation. Let f be a time-continuous piecewise
constant function on the interval [0, 1] with finitely many jumps, denoted by ‖∇f ‖0. We further assume
that f is a càdlàg function, which means that the limits f (t+) and f (t−) exist and f (t+) = f (t) for
all t ∈ [0, 1]. Let ȳN be the (point or integral) sampling of f at density 1/N ; that is, ȳN

n = f
(

n
N+1

)
or

ȳN
n = 1

N

∫ n
N

n−1
N

f (t) dt. Data at sampling density 1/N is given by

yN
n = ȳN

n + ηN
n , (8)
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Algorithm 1: Solver for the Potts problem (Pγ ) with real-valued or circle-valued data

Input: y ∈ R
N or y ∈ T

N : data; γ > 0: model parameter; w ∈ (R+0 )N : weights;
Output: Global minimizer x̂ of (Pγ );
begin

/* Search space reduction */
Determine reduced search space V (see Section 2.1);
/* Tabulation */
for k← 1 to K do

B1
k ← w1d(vk , y1);

end
for n← 2 to N do

z← mink=1,...,K Bn−1
k ;

for k← 1 to K do
Bn

k ← wnd(vk , yn)+min(z + γ , Bn−1
k );

end
end
/* Backtracking */
l← arg mink=1,...,K BN

k ;
x̂n ← vl;
for n← N − 1, N − 2, ..., 1 do

Bn
l ← Bn

l − γ ;
l← arg mink=1,...,K Bn

k ;
x̂n ← vl;

end
return x̂;

end

where ηN is an N-dimensional vector of independent random variables. Since

K = |Val(yN
n )| ≤ |Val(ȳN

n )| |Val(ηN
n )| ≤ Cf |Val(ηN

n )|
with the constant Cf = 2(‖∇f ‖0 + 1), the number of expected values is bounded by the number of
expected values of the noise η. If the supports of the distribution of the components of η are uniformly
bounded with respect to n, N , then K is bounded and we obtain linear complexity of Algorithm 1. For
unbounded supports, we get a slightly higher algorithmic complexity.

Proposition 4 Let C > 0 and 0 < p < 1. If ηN is an N-dimensional vector of independent random vari-
ables, where each component follows an integer-valued probability distribution satisfying the exponential
decay condition P(ηN

n = k) ≤ Cp|k|, then |Val(ηN)| ∈ Op(log N).

The proof is given in the Appendix. Examples of distributions that satisfy the hypothesis of Propo-
sition 4 are the discrete Laplace distribution, the discrete Gaussian distribution and the geometric
distribution. We summarize the complexity of Algorithm 1 for the discussed data in Table 1.

Remark 1 The statement of Proposition 4 remains true when each of the probability distributions of
the independent random variables ηN

n are discrete with a global minimum separation distance, i.e., there
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Table 1 Complexity of the proposed solver for the least absolute values Potts problem (Algorithm 1)
for quantized and non-quantized, real-valued and circle-valued data. The last two rows for quantized
real-valued data refer to data of the form (8).

Circle-valued data Real-valued data

Non-quantized data O(N2) O(N2)

Quantized data O(N) O(N2) general case
Op(N log N) for noise with exp. decay (Proposition 4)
O(N) for bounded noise

is ε > 0 such that any pair of neighboring values a, b in the range of any random variable ηN
n fulfill

|a − b| > ε. In this case, the decay condition of Proposition 4 reads P(ηN
n = a) ≤ Cp|a|, where a is in

the range of the random variable ηN
n .

3. The J-jump sparsity problem

Next we consider the J-jump sparsity problem given by

argmin
‖∇x‖0≤J

∑N

n=1
wn d(xn, yn), (PJ )

where J ∈ N0. Its solution will be useful for solving the Potts problem (Pγ ) for all parameters simul-
taneously (see next section). Apart from this, (PJ ) is an interesting problem in its own right which has
applications, for example, in minimum error quantization; see Bruce (1965).

3.1 Basic properties of the J-jump sparsity problem

In the following, we denote by L the number of jumps of the data y; that is, L = ‖∇y‖0. For J ≥ L, the
J-jump sparsity problem (PJ ) has the trivial solution y. Thus, we can restrict ourselves to the case of J
not being larger than L.

Although the J-jump sparsity problem (PJ ) and the Potts problem (Pγ ) are closely related, they
are not fully equivalent in the sense that a minimizer of (PJ ) may not appear as minimizer of (Pγ ), no
matter of the value of γ . To see this, consider the scalar data y = (0, 1, 0) and as data term the Euclidean
distance with uniform weights. The possible solutions for J = 1 are the one-jump solutions of the form
(0, a, a), (a, a, 0), a ∈ [0, 1], and the zero-jump solution (0, 0, 0). However, one-jump solutions cannot
be minimizers of the Potts functional: their Potts functional values are equal to γ + 1, but this is for
all γ > 0 strictly higher than the functional value of the zero jump solution which is equal to 1. An
analogous example can be given for circle-valued data.

The above example also shows that the J-jump sparsity problem can have solutions with (J − 1)

jumps. Next, we argue that a solution of the J-jump sparsity problem cannot have less than (J − 1)

jumps. Assume that a solution xJ has (J−2) or fewer jumps. Then we find an index n such that xJ
n �= yn.

Setting xJ
n equal to yn adds at most two jumps. Thus, we have still at most J jumps. But the approximation

error of that candidate is lower than that of xJ , which contradicts the fact that xJ minimizes the J-jump
sparsity problem.
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3.2 An efficient solver based on dynamic programming

As with the Potts problem, the key to a fast solver is a reduction of the search space to the finite set V N :

Theorem 5 Let J ∈ N0 and let V be as in Theorem 2. The J-jump sparsity problem (PJ ) has a solution
x̂ that fulfills x̂ ∈ V N .

The proof is an obvious modification of the proof of Theorem 2.
The computational solution is also similar to the solver of the Potts problem. The main difference is

that we now require JN tables of length K instead of N tables of length K . A table entry Bn,j
k (1 ≤ n ≤ N ,

1 ≤ j ≤ J , 1 ≤ k ≤ K) stores the approximation energy of the optimal j-jump solution x for data
(y1, . . . , yn) with xn = vk . The first J tables B1,j are given by B1,j

k = w1d(vk , y1), for j = 0, . . . , J .
Using the dynamic programming principle, we fill the tables Bn,j successively for n = 1, . . . , N and for
j = 0, . . . , J by

Bn,j
k = min

{
z; wnd(vk , yn)+ Bn−1,j

k

}
,

where z = minl=1,...,K Bn−1,j−1
l . As z does not depend on k, it can be computed separately. Filling the table

Bn,j requires K steps; hence, the total complexity for the tabulation is O(NKJ). For the backtracking
step, we first determine the minimizer lN of the table BN ,J , i.e., lN = arg mink BN ,J

k . (As for the Potts
problem, the tuple l ∈ N

N stores minimizing indices.) We further initialize the number of remaining
jumps by iN = J . For n = N − 1, . . . , 1, we decide—based on the tables—whether it is advantageous
to take a jump or to continue with the same value via

(ln−1, in−1) = argmin
(k,j)∈{(1,in−1),...,(K ,in−1),(ln ,in)}

Bn,j
k .

The procedure terminates if in = 0, and then we set l1 = · · · = ln. Having computed the minimizing
indices ln, we obtain a minimizer x̂ of the J-jump sparsity problem by x̂n = vln , for n = 1, . . . , N . The
complexity of the backtracking step is O(KN).

A minor modification of the backtracking step allows us to compute the minimizers for the jump
constrained problem for all parameters J ′ ≤ J without having to build up new tables. We just have to
initialize the backtracking step with iN = J ′ instead of iN = J . In particular, if we want to compute
minimizers for all possible number of jumps J = 0, . . . , L, we only need compute the tabulation for
J = L and perform L + 1 backtracking steps with the initializations iN = 0, . . . , L. This amounts to the
complexity O(KNL).

We eventually summarize the results of the above derivation:

Theorem 6 The above algorithm computes a global minimizer of (PJ ) in O(KNJ). Computing
minimizers for all J = 0, . . . , L simultaneously is O(KNL).

4. Solving the Potts problem for all parameters simultaneously

We can solve the Potts problem (Pγ ) for all parameters γ > 0 simultaneously with a moderate effort.
To that end, we exploit the following relation between the Potts and the J-jump sparsity problems.
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Fig. 1. The function φ(γ ) (blue solid line) is the largest minorant of the affine functions γ J + εJ for J = 0, . . . , L (red dashed
lines).

Lemma 7 Let γ > 0 and let x̂ be a solution of the Potts problem (Pγ ). Then x̂ is also a solution of the
jump constrained problem (PJ ) with parameter J = ‖∇ x̂‖0.

The proof is given in the Appendix. The example in the first paragraph of Section 3 shows that the
opposite direction of Lemma 7 is not true in general. Now assume that we have computed for each
J = 0, . . . , L, a minimizer for the J-jump sparsity problem, which we denote by xJ . (Recall that this
can be done in O(KNL) by Theorem 6.) Lemma 7 tells us that the set {x0, . . . , xL} already contains a
solution of (Pγ ) for each γ > 0. This implies that we obtain a solution x̂ of (Pγ ) by scanning through
the J-jump solutions; that is,

x̂ ∈ argmin
x∈{x0,...,xL}

γ ‖∇x‖0 +
∑N

n=1
wn d(xn, yn).

It remains to identify the connection between γ and J . We denote the minimal Potts functional value
for some γ > 0 by φ(γ ), and we rewrite it as

φ(γ ) = min
x

Pγ (x) = min
x∈{x0,...,xL}

γ ‖∇x‖0 +
∑N

n=1
wn d(xn, yn) = min

J=0,...,L
γ J + εJ , (9)

where εJ =∑N
n=1 wn d(xJ

n , yn) is the approximation error of a J-jump solution xJ . Of even greater interest
is the function that maps γ to the minimizing argument J:

Ĵ(γ ) = argmin
J=0,...,L

γ J + εJ . (10)

With the help of Ĵ , we obtain a minimizer of (Pγ ) by x̂ = xĴ(γ ).
Let us now explain how to compute the mappings φ and Ĵ given by (9) and (10) efficiently. Being

the pointwise infimum of L + 1 affine linear functions, φ is concave and piecewise linear (with at most
L + 1 pieces). (It is the largest concave minorant of these affine linear functions.) The graph of φ is a
polygon which is determined by at most L points; see Fig. 1. Let us denote the affine function γ J+εJ by
gJ . We first compute the intersection of g0 and g1 and store that point on a stack. We proceed inductively
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as follows. Assume that we have computed the concave minorant, φJ , of the first J affine functions.
Also assume that we have stored the determining nodes on a stack S, where at the top of the stack is the
leftmost node. In the step J+ 1 , we compute the intersection of the line gJ+1 with φJ . Since the slope of
gJ+1 is larger than all slopes of φJ there is at most one point of intersection. We first delete the nodes of
φJ that lie above the line gJ ; that is, we pop the stack until we encounter a point which is below the new
line. Then we compute the intersection of the line through the point we have popped last and the point
at top of the stack. We push that point to the stack. We proceed until no more lines have to be added.
The points in the stack then determine the graph of φ. (The slope to∞ is equal to 0 and the slope to 0
is given by the number of jumps of the data, ‖∇y‖0.) The mapping Ĵ is determined by the slopes of φ.

We eventually summarize the results of this section:

Theorem 8 There is an O(KNL) algorithm that computes minimizers of (Pγ ) for all parameters γ > 0
simultaneously.

5. Numerical experiments

We present numerical results on synthetic data with known ground truth, and we show results on real
data. The experiments were conducted on a desktop computer (Intel Xeon E5, 3.5 GHz, 32 GB RAM).
The proposed algorithms were implemented in Matlab.

5.1 Synthetic real-valued data

An extensive numerical study on the denoising performance of the L1-Potts estimator has been given
in earlier works by Friedrich et al. (2008) and Weinmann et al. (2015). Therefore, we here focus on
comparison to the runtimes of the solver by Weinmann et al. (2015).1 (Recall that this solver improved
upon the first solver of Friedrich et al., 2008 both in time and memory complexity.) As a basis for our
experiment we use the signal previously employed in Fig. 1 of Weinmann et al. (2015) as ground truth; it
has eight jumps and a dynamic range of [0, 1]. We corrupted it by Laplacian noise of standard deviation
σ = 0.1. As a result, the final signal has K = N different values. In Fig. 2, we show the average runtime
with respect to 10 different realizations of the noise. We observe that Algorithm 1 is about twice as fast
as the state-of-the-art solver for general non-quantized data. For quantized data, the proposed algorithm
becomes significantly faster as the length of the data increases. Thus, it might be reasonable to quantize
the data to a desired precision before applying the proposed solver when dealing with very large data.
We note that the runtimes of the algorithm of Weinmann et al. (2015) and the proposed algorithm for
non-quantized data are by construction virtually independent of the number of jumps of the underlying
signal.

In Fig. 3, we compare the runtimes for different noise distributions, where data is quantized to
three decimals. Uniform noise is bounded, so the runtime grows linearly in N . Laplacian noise leads to
linearithmic scaling as it satisfies the hypothesis of Proposition 4. Even for Cauchy noise, the complexity
grows significantly slower than quadratic, although it has infinite variance and its probability density has
very slow decay. In all cases, the computational time is significantly lower than the one of the benchmark
method of Weinmann et al. (2015), which exhibits almost no dependence of the runtimes on the noise.

1 The reference implementation of the solver by Weinmann et al. (2015) is available at http://pottslab.de, accessed December
8, 2016.
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Fig. 2. Runtime of our algorithm for the Potts problem with real-valued data. The proposed method is faster than the state-of-
the-art solver of Weinmann et al. (2015). With a prior quantization, we are able to process even very large data within a few
seconds.

Fig. 3. Runtime of our algorithm for the Potts problem for data with different noise distributions. All signals are quantized to
three decimals. The runtimes are averages over 100 realizations. We observe that the runtime grows linearly in N for uniform
noise. Laplacian noise leads to linearithmic scaling as suggested by Proposition 4. Even for Cauchy noise, the computational
effort grows significantly slower than quadratic.

5.2 Synthetic circle-valued data

We illustrate the performance of the Potts estimator for denoising synthetic circle-valued signals (with
known ground truth). To this end, we create random jump-sparse signals as follows: We create a com-
pound Poisson distributed random vector s ∈ R

N ; that is, sn = 0 with probability e−λ and sn is uniformly
distributed in [−a, a] with probability 1 − e−λ; see Unser & Tafti (2014). Here we use λ = 0.05 and
a = 1/2. The (true) signal ȳ is given as the summation process of the innovation s interpreted as angle;

that is, ȳn = exp
(

i
∑n

j=1 sj

)
. We add noise to the phase by y = ȳ exp(iη), where η is a Laplacian

distributed random vector with standard deviation σ = 0.4. In Fig. 4, we report a realization of the
random signal and its Potts estimate for different model parameters γ . In Fig. 5, we show the deviation
of the estimates to the ground truth with respect to the sum over the pointwise arc length distances, and
with respect to the number of jumps in dependance of the model parameter γ . (Recall that the Potts
estimate for all model parameters γ can be computed with moderate effort by the algorithm described
in Section 4.) Figure 6 shows the results for a different noise distribution, namely a wrapped Gaussian
distribution with σ = 0.3.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a) A circle-valued signal of length N = 500 in angular representation corrupted with wrapped Laplacian noise with
σ = 0.4. (b)–(f) Potts estimate visualized for various values of the model parameter γ , plotted as red line. The ground truth is
drawn in black. (See also Fig. 5 for the errors in dependance of the γ parameter.)

Eventually we note that the runtimes for circle-valued data are of the same order of magnitude as
those of the real-valued case for boundedly quantized and unquantized data, respectively.

5.3 Results on real-world data

Next we apply our method to real-world data. First, we look at the estimation of steps in the rotation of the
bacterial flagellar motor. The bacterial flagellar motor is a rotary molecular machine that is embedded
in the bacterial cell envelope (Sowa et al., 2005; Sowa & Berry, 2008). It propels many species of
swimming bacteria. Sowa et al. (2005) observed steps in the rotation of the flagellar motor over time;
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Fig. 5. The plots illustrate the total absolute deviation of the Potts estimate x̂ and to ground truth ȳ (left) and the difference w.r.t. to
the number of jumps in dependance of model parameter γ (right). The graphs correspond to the signal in Fig. 4.

(a) (b)

(c) (d)

(e) (f)

Fig. 6. (a) A circle-valued signal of length N = 500 in angular representation corrupted with wrapped Gaussian noise with
σ = 0.3. (b)–(f) Potts estimate visualized for various values of the model parameter γ , plotted as red line. The ground truth is
drawn in black.
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Fig. 7. The blue points represent the angle of the bacterial flagellar motor over time. The red line is the least absolute values Potts
estimate. (Original data by courtesy of Sowa et al., 2005.)

in average, they found approximately 26 steps per revolution. The present data set is a time series of the
angular position of the flagellar motor. The data was acquired using back-focal plane interferometry.
The measurement uncertainty of the data acquisition results in a slightly blurred signal. In view of the
built-in deconvolution property of the L1-Potts functional (cf. Theorem 4.4 in Weinmann et al., 2015),
we expect that a slight blur does not negatively affect the performance of the Potts estimator. In Fig. 7,
we report the estimate for the model parameter γ = 1.

Our second real-life data set consists of wind directions at the station WPOW1 (West Point, WA)
recorded every hour in the year 2013.2 The Potts estimate facilitates to identify the time intervals of
approximately constant wind direction. The data is given quantized to integer angles in degrees, i.e.,
K = 360. In Fig. 8, we report the result for the model parameter γ = 10.

6. Conclusion

We have studied the Potts estimator based on least absolute deviations for real-valued data and for circle-
valued data. We have proposed exact solvers for the Potts problem with real-valued and circle-valued

2 Data available at http://www.ndbc.noaa.gov/historical_data.shtml, accessed December 8, 2016.
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Fig. 8. Wind directions at Station WPOW1 (West Point, WA) recorded every hour in the year 2013. (The data is given quantized
to K = 360 angles.) The red line is the least absolute values Potts estimate for circle-valued data.

data. Here, the key observation was that solutions take values in a finite set (also for non-quantized
data) which allowed us to employ a Viterbi-type dynamic program as proposed in Felzenszwalb &
Huttenlocher (2006). Furthermore, we have obtained an algorithm for solving the Potts problem for
all parameters γ simultaneously which was based on solving the related J-jump sparsity problem.
The proposed algorithm for real-valued data improves upon the state-of-the-art solver with respect
to computational time. The circle-valued variant is the first exact solver for the circle-valued Potts
problem to our knowledge. We have illustrated the practical utility for the estimation of two real-life
data sets: estimation of steps in the rotation of the bacterial flagellar motor and estimation of time
series of wind directions. An interesting topic of future research are strategies for choosing the model
parameter.

Acknowledgements

We would like to thank Yoshiyuki Sowa, Alexander Rowe, Mark Leake, Toshiharu Yakushi, Michio
Homma, Akihiko Ishijima and Richard Berry for providing the data set of the bacterial flagellar motor.
We further would like to thank the anonymous reviewers for their valuable comments and suggestions.

Funding

German Research Foundation (STO1126/2-1, WE5886/4-1 to M.S., A.W.). Helmholtz Association
within the young investigator group VH-NG-526 to A.W. European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 267439 to
M.U.

References

Auger, I. & Lawrence, C. (1989) Algorithms for the optimal identification of segment neighborhoods. Bull. Math. Biol., 51,
39–54.

Bellman, R. (1957) Dynamic Programming. Princeton, NJ, USA: Princeton University Press.
Bellman, R. & Roth, R. (1969) Curve fitting by segmented straight lines. J. Am. Stat. Assoc., 64, 1079–1084.

Downloaded from https://academic.oup.com/imaiai/article-abstract/6/3/225/2901591/Jump-penalized-least-absolute-values-estimation-of
by Universite and EPFL Lausanne user
on 05 September 2017



242 M. STORATH ET AL.

Bergmann, R., Laus, F., Steidl, G. &Weinmann,A. (2014). Second order differences of cyclic data and applications in variational
denoising. SIAM J Imaging Sci., 7, 2916–2953.

Bhattacharya, R. & Patrangenaru, V. (2003) Large sample theory of intrinsic and extrinsic sample means on manifolds I.
Ann. Stat., 31, 1–29.

Bhattacharya, R. & Patrangenaru, V. (2005) Large sample theory of intrinsic and extrinsic sample means on manifolds II.
Ann. Stat., 33, 1225–1259.

Blake, A. (1983) The least-disturbance principle and weak constraints. Pattern Recognit Lett., 1, 393–399.
Blake, A. & Zisserman, A. (1987) Visual Reconstruction. Cambridge: MIT Press.
Boysen, L., Kempe, A., Liebscher, V., Munk, A. & Wittich, O. (2009) Consistencies and rates of convergence of jump-penalized

least squares estimators. Ann. Stat., 37, 157–183.
Boysen, L., Liebscher,V., Munk,A. & Wittich, O. (2007) Scale space consistency of piecewise constant least squares estimators:

another look at the regressogram. Lecture Notes-Monograph Series, vol. 55, Asymptotics: Particles, Processes and Inverse
Problems: Festschrift for Piet Groeneboom, Beachwood, Ohio, USA: Institute of Mathematical Statistics, pp. 65–84.

Bruce, J. (1965) Optimum quantization. Technical Report 429, Cambridge, Massachusetts: Massachusetts Institute of Technology.
Chambolle,A. (1995) Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations.

SIAM J. Appl. Math., 55, 827–863.
Chambolle, A. & Pock, T. (2011) A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math.

Imaging Vis., 40, 120–145.
Clason, C., Jin, B. & Kunisch, K. (2009) A duality-based splitting method for �1-TV image restoration with automatic

regularization parameter choice. SIAM J. Sci. Comput., 32, 1484–1505.
Cremers, D. & Strekalovskiy, E. (2013) Total cyclic variation and generalizations. J. Math. Imaging Vis., 47, 258–277.
Dong, Y., Hintermüller, M. & Neri, M. (2009) An efficient primal-dual method for L1 TV image restoration. SIAM J. Imaging

Sci., 2, 1168–1189.
Donoho, D. (1999) Wedgelets: nearly minimax estimation of edges. Ann. Stat., 27, 859–897.
Downs, T. & Mardia, K. (2002) Circular regression. Biometrika, 89, 683–698.
Drobyshev,A., Machka, C., Horsch, M., Seltmann, M., Liebscher,V., deAngelis, M. & Beckers, J. (2003) Specificity assess-

ment from fractionation experiments (safe): a novel method to evaluate microarray probe specificity based on hybridisation
stringencies. Nucleic Acids Res., 31, 1–10.
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Appendix. Proofs

Proof of Lemma 1. Let z ∈ T \ V be arbitrary, and let us denote the median-defining functional by
f (v) = ∑N

n=1 wn d(v, yn). The diameter passing through z cuts the unit circle into two hemispheres.
We denote the counterclockwise hemisphere relative to z by S+ and the other one by S−. Let us
denote the total weight of the elements in S+ by W+, i.e., W+ = ∑

n:yn∈S+ wn, and analogously let
W− = ∑

n:yn∈S− wn. Without loss of generality, we can assume that S− is not ‘heavier’ than S+, i.e.,
W− ≤ W+. Let z′ ∈ V be the nearest neighbor of z in V on S+. The distance between each element in
S+ and z′ is by d(z′, z) smaller than its distance to z. Hence, replacing z by z′, the functional value of f is
decreased by

∑
n:yn∈S+ wnd(z′, z) = d(z′, z)W+. With an analogous argument for the other hemisphere,

f is increased at the same time by d(z′, z)W−. Thus, we have that

f (z′) = f (z)+ d(z′, z)W− − d(z′, z)W+ = f (z)+ d(z′, z)(W− −W+) ≤ f (z),

where the inequality follows from W− ≤ W+. So, for every z ∈ T \V , there is z′ in V that has a smaller
or equal functional value as z. This implies that there is a median in V . �

Proof of Theorem 2. Let Q = {q1, . . . , qt} ⊂ {1, . . . , N − 1} be a set of t jump indices, and let XQ be
the set of x ∈ XN that jump at the index indicated by Q; that is, xn �= xn+1 for n ∈ Q and xn = xn+1

otherwise. The minimizer of the Potts restricted to XQ may be expressed as

min
x∈XQ

Pγ (x) = γ |Q| + min
x∈XQ

∑N

n=1
wn d(xn, yn).

Since the elements of XQ are constant between two jumps we get that

min
x∈XQ

∑N

n=1
wn d(xn, yn) = min

μ∈X

∑q1

n=1
wn d(μ, yn)+ · · · +min

μ∈X

∑N

n=qt+1
wn d(μ, yn).

Hence, x ∈ XQ minimizes minx∈XQ Pγ (x) if x equals a median between any two jumps. By Lemma 1, a
median is contained in the set V . Considering all potential sets of jump indices (which are finitely-many)
completes the proof. �

Proof of Theorem 3. It follows from Theorem 2 and its subsequent paragraph that the search space
reduction is O(KN). The utilized variant of the Viterbi algorithm solves the reduced problem in O(KN),
see Felzenszwalb & Huttenlocher (2006). Thus, the overall method is O(KN). �

Proof of Proposition 4. We have that

P(|ηN
n | ≥ m) ≤ C

∑
| j|≥m

p| j| = C

[(
2

1

1− p
− p

)
−

(
2

1− pm

1− p
− p

)]
≤ C′pm

for a constant C′ > 0. Now let m0 be such that C′pm0 < 1. The cardinality of the unique values, i.e.,
|Val(ηN)|, can be estimated by |Val(ηN)| ≤ 2 maxn |ηN

n | + 1, where |ηN
n | is the ordinary absolute value
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of ηN
n . It follows for m ≥ m0 that

P(|Val(ηN)| < m) ≥ P(max
n
|ηN

n | < (m − 1)/2) =
∏N

n=1
P(|ηN

n | < (m − 1)/2)

≥
∏N

n=1
(1− C′p(m−1)/2) = (1− C′p(m−1)/2)N ≥ 1− C′Np(m−1)/2.

Then, letting m = − 4
log p log N yields

P
(
|Val(ηN)| < − 4

log p
log N

)
≥ 1− C′p−1/2Np

2 log N
− log p

= 1− C′p−1/2N exp

(
2 log N

− log p
log p

)
= 1− C′p−1/2N−1.

Hence P
(|Val(ηN)| ≥ C′′ log N

) → 0 as N → ∞, with C′′ = − 4
log p , which implies that |Val(ηN)| ∈

Op(log N). �

Proof of Lemma 7. Since x̂ is a minimizer of the Potts functional, it is a minimizer of the problem

min
x

∑N

n=1
wn d(xn, yn), s.t. ‖∇x‖0 = ‖∇ x̂‖0. (A.1)

By the minimality of x̂ with respect to the Potts functional, we further get that
∑N

n=1 wn d(xn, yn) >∑N
n=1 wn d(x̂n, yn) for all x with ‖∇x‖0 < ‖∇ x̂‖0. This means that all candidates with less than or equal

to many jumps as x̂ do not lead to a smaller value of the target functional in (A.1). Therefore, x̂ is a
solution of (PJ ) for the parameter J = ‖∇ x̂‖0. �

Proof of Theorem 8. It follows from Lemma 7 that the set of solutions of the Potts problem (Pγ ) is
contained in the set of solutions of the jump constrained problem (PJ ). The latter can be computed for
all number of jumps in O(KNL) by (6). For mapping the parameter value γ to the smallest number of
jumps of a corresponding Potts solution (Pγ ), we need to compute intersections of certain lines and
graphs of concave functions as explained in the paragraph before Theorem 8. Namely, in step J + 1
(0 ≤ J ≤ L) we compute the intersection of the line gJ+1 with the concave piecewise affine function
φJ . (Here, we use the notation as in the paragraph before Theorem 8.) The costs for this can be bounded
from above by O(L2), and, as L ≤ N − 1, also by O(NL). Summing all up, we get the complexity
O(KNL). �
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